Патенты автора Минаев Игорь Георгиевич (RU)

Изобретение относится к области растениеводства, а также систем и аппаратуры передачи данных и предназначена для неразрушающей биодиагностики ксилемного потока травянистых растений с использованием беспроводной передачи данных. Система содержит датчик измерения ксилемного потока, закрепленный на стебле растения и состоящий из нагревательного элемента и двух измерительных сенсоров. Измерительные сенсоры закреплены вертикально выше и ниже нагревательного элемента. Система дополнительно снабжена устройством хранения и обработки данных, устройством беспроводной передачи данных, сервером, периферийным устройством и блоком питания. При этом нагревательный элемент соединен своим информационным входом с информационным выходом устройства хранения и обработки данных, информационные выходы измерительных сенсоров соединены с информационными входами устройства хранения и обработки данных, вход и выход которого соединены с соответствующими выходами и входами устройства беспроводной передачи данных, при этом последнее соединено с сервером по беспроводному каналу связи, а устройство обработки и хранения данных своим управляющим выходом соединено с входом периферийного устройства. При этом входы питания устройства обработки и хранения данных и устройства беспроводной передачи данных соединены с соответствующими выходами блока питания. Система позволяет реализовать возможность беспроводной передачи данных ксилемного потока контролируемых растений, а также беспроводного контроля устройствами периферии. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости СX, основанный на регистрации времени заряда t1 измеряемого конденсатора с момента подачи на него через резистор R постоянного напряжения Е до момента достижения на измеряемом конденсаторе СX заранее принятого порогового значения напряжения U0, после подключения параллельно к измеряемому конденсатору СX образцового конденсатора СO с известной емкостью снова измеряют время заряда этих конденсаторов t2, не меняя при этом значение сопротивления R резистора, напряжения зарядного источника Е и заранее принятого порогового значения напряжения U0 на обкладках этих конденсаторов СX и СO. С помощью ключа К1 (фиг. 1) через резистор R в момент времени t=0 подают напряжение Е на конденсатор с измеряемой емкостью СX. Напряжение U1(t) на конденсаторе СX, контролируемое измерителем 1, начинает нарастать по экспоненте (фиг. 2), с постоянной времени T1. Как только U1(t) достигнет заранее принятого порогового значения U0, фиксируют момент времени t1. Отключают с помощью ключа K1 источник постоянного напряжения Е. С помощью ключа K3 разряжают конденсатор с измеряемой емкостью СX и подключают к нему параллельно с помощью ключа K2 образцовый конденсатор с емкостью СO. С помощью ключа K1 снова подают в момент времени t=0 напряжение Е на параллельно соединенные конденсаторы СX и СO. Напряжение U2(t) на их обкладках начинает нарастать по более пологой экспоненте (фиг. 2), с постоянной времени Т2.Как только U2(t) достигнет заранее принятого порогового значения U0, фиксируют момент времени t2. Измеряемую емкость вычисляют по формуле: ,где СO - емкость образцового конденсатора;t1 - время заряда конденсатора с измеряемой емкостью СX до заранее принятого порогового значения напряжения на его обкладках;t2 - время заряда параллельной цепи из конденсаторов СX и СO до заранее принятого порогового значения напряжения на их обкладках.Технический результат, который может быть достигнут с помощью предлагаемого способа измерения электрической емкости, направлен на устранение влияния изменения напряжения Е источника постоянного тока, сопротивления R резистора в цепи заряда конденсатора с измеряемой емкостью СX, на результат измерения, т.е. на повышение точности измерения электрической емкости. 1 табл., 3 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости основан на регистрации времени заряда t1 измеряемого конденсатора с момента подачи на него через резистор R постоянного напряжения Е до момента достижения на измеряемом конденсаторе СХ заранее принятого порогового значения напряжения U0. Заменив измеряемый конденсатор СХ образцовым конденсатором СО с известной емкостью, измеряют время заряда образцового конденсатора t2, не меняя при этом значения сопротивления резистора R, напряжения зарядного источника Е и заранее принятого порогового значения напряжения U0 на конденсаторе. Измеряемую емкость вычисляют по формуле: где СО - емкость образцового конденсатора; t1 - время заряда конденсатора с измеряемой емкостью СХ до заранее принятого порогового значения напряжения на его обкладках; t2 - время заряда конденсатора СО до заранее принятого порогового значения напряжения на его обкладках. Технический результат заключается в повышении точности измерения электрической емкости. 1 табл., 3 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости заключается в регистрации времени заряда измеряемого конденсатора с момента подачи на него через резистор постоянного напряжения до момента достижения на измеряемом конденсаторе заранее принятого порогового значения напряжения. При этом после подключения последовательно к измеряемому конденсатору образцового конденсатора с известной емкостью снова измеряют время заряда этих конденсаторов, не меняя при этом значения сопротивления резистора, напряжения зарядного источника и заранее принятого порогового значения напряжения на обкладках этих конденсаторов, и измеряемую емкость вычисляют по формуле где CO - емкость образцового конденсатора;t1 - время заряда конденсатора с измеряемой емкостью CX до заранее принятого порогового значения напряжения на его обкладках;t2 - время заряда цепи из последовательно соединенных конденсаторов CX и CO до заранее принятого порогового значения напряжения на их обкладках. Техническим результатом является повышение точности измерения электрической емкости. 3 ил., 1 табл.

Изобретение относится к области электротехники и предназначено для зажигания и питания током повышенной частоты газоразрядных осветительных ламп высокого давления

Изобретение относится к электротехнике, в частности к способам питания газоразрядных ламп и устройствам для их реализации, и может быть использовано в схемах зажигания и питания газоразрядных ламп высокого давления без вспомогательного пускового электрода при эксплуатации натриевых ламп высокого давления в осветительных установках теплиц

Изобретение относится к области электротехники и предназначено для зажигания и питания током повышенной частоты газоразрядных осветительных ламп высокого давления

Изобретение относится к пускорегулирующей аппаратуре и может быть использовано для запуска газоразрядных ламп высокого давления

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения давления

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения уровня диэлектрических и токопроводящих жидкостей, например в резервуарах с нефтью или нефтепродуктами

Изобретение относится к измерительной технике и может быть использовано для исследования различных диэлектрических материалов, а также в сельском хозяйстве для исследования электрофизиологического состояния семян

 


Наверх