Патенты автора Игнатчик Виктор Сергеевич (RU)

Изобретение относится к области водоотведения, а также системам (устройствам) определения параметров процесса обработки сточных вод. Раскрыта система определения концентрации веществ в аэротенке, включающая аэротенк/аэротенки, вторичный отстойник/отстойники, аэрационную установку, модуль ввода характеристик аэротенка/аэротенков, модуль анализа диагностируемых параметров, блок определения времени нахождения сточной воды в компонентах аэротенка/аэротенков, блок ввода фактических значений расхода кислорода, подаваемого аэрационной установкой, блок определения концентраций веществ в сточной воде в компонентах аэротенка/аэротенков и блок вывода результатов. При этом модуль ввода характеристик аэротенка/аэротенков включает блок декомпозиции аэротенка/аэротенков, в котором осуществляется декомпозиция аэротенка/аэротенков на совокупность последовательно расположенных компонентов аэротенка/аэротенков, имеющих входной и выходной потоки и расположенных по ходу движения сточных вод от входного потока сточных вод, поступающих на очистку, до выходного потока. Система позволяет определять параметры процесса очистки сточных вод в аэротенке с учетом изменения параметров среды в ходе процесса, что позволяет повысить качество и надежность биологической очистки сточных вод за счет определения параметров и прогнозирования хода процесса при изменении входных параметров. 3 ил.

Система относится к области водоотведения, а также к системам управления процессом очистки сточных вод и может быть использована для при создании новых или реконструкции существующих станций очистки бытовых, концентрированных по органическим загрязнениям хозяйственно-бытовых и близких к ним по составу сточных вод. Система включает в себя трубопроводы подачи и отвода воды, отвода избыточного активного ила, блок биологической очистки, насос для откачки активного ила, аэраторы. Блок биологической очистки состоит из биореактора, выполненного в виде последовательно соединенных зон - анаэробной, аноксидной, аэробной, предназначенных для удаления азота и биологической дефосфотации, и отстойника. Первый рециркуляционный поток образован между аноксидной и анаэробной зонами, второй - между аэробной и аноксидной зонами, третий – между вторичным отстойником и аноксидной зоной биореактора. На первом рециркуляционном потоке установлен датчик контроля концентрации БПК. На первом, втором и третьем рециркуляционных потоках установлены расходомеры, запорно-регулирующая арматура с дистанционным управлением, датчики определения концентрации азота нитратов, азота аммонийного, фосфатов, датчиками температуры, датчики определения рН, датчики определения концентрации активного ила. Устройство снабжено блоками определения параметров поступающих сточных вод, первого, второго и третьего рециркуляционных потоков, очищенной воды. Также в устройстве содержатся модуль задания параметров, модуль сравнения и модуль управления параметрами. Модуль задания параметров содержит блок задания концентрации веществ в поступающих в анаэробную зону, блок задания концентрации веществ в поступающих в аноксидную зону, блок задания концентрации растворенного кислорода в аэробной зоне. Модуль сравнения содержит блоки сравнения концентрации в первом, втором и третьем рециркуляционных потоках, блок сравнения концентрации в трубопроводе подачи сточной воды, блок сравнения концентрации в трубопроводе отвода очищенной воды. Модуль управления параметрами содержит блок управления запорно-регулирующей арматурой, блок управления насосами, блок управления воздуходувкой. Технический результат: повышение качества биологической очистки сточных вод за счет корректировки параметров рециркуляционных потоков и поддержания оптимальных значений концентраций в системе биологической очистки сточных вод. 1 ил.

Система относится к области водоотведения, а также системам (устройствам) определения параметров процесса обработки сточных вод. Раскрыта система определения концентрации веществ во вторичном отстойнике, позволяющая определять и поддерживать параметры процесса очистки сточных во вторичном отстойнике с учетом изменения параметров среды. Технический результат: повышение качества биологической очистки сточных вод за счет определения и поддержания необходимого количества активного ила в системе биологической очистки. 2 ил.

Изобретение относится к области водоотведения. Устройство содержит кольца перекрытия, подвижную ферму илоскреба. Кольца перекрытия выполнены из сегментов, имеющих трапециевидную или прямоугольную форму. Сегменты колец перекрытия жестко закреплены между собой. Сегменты колец перекрытия выполнены из материалов, имеющих положительную плавучесть. Кольца перекрытия выполнены свободно плавающими на поверхности зеркала воды. Кольца перекрытия выполнены с возможностью концентричного вращения вокруг центральной оси отстойника. Кольца перекрытия выполнены с возможностью свободного вращения илоскреба, имеющего систему скребков и треугольную ферму. Сегменты колец перекрытия снабжены отбойной юбкой, агломерационными тонкослойными модулями, имеющими отрицательную плавучесть. Отбойная юбка расположена на внешнем и внутреннем периметре сегментов колец перекрытия. Количество колец перекрытия соответствует количеству зазоров между конструктивными элементами подвижной фермы илоскреба. Агломерационные тонкослойные модули присоединены к сегментам колец перекрытия жесткими подвесами. Обеспечивается повышение эффективности и надежности биологической очистки сточных вод. 4 ил.

Изобретение относится к области систем водоотведения. Система содержит блок транспортировки сточных вод, содержащий коллектор, сеть водоотведения, переливной трубопровод. Переливной трубопровод выполнен в виде участка сети. Система дополнительно снабжена регулирующим трубопроводом, компенсационным трубопроводом, механической решеткой с механизмом очистки механической решетки, электроприводом механизма очистки механической решетки, как минимум двумя датчиками уровня, входным и выходным колодцами, блоком управления механизмом очистки механической решетки, приемным резервуаром насосной станции канализационных очистных сооружений. Сеть водоотведения и/или коллектор соединены во входном колодце с компенсационным трубопроводом диаметром Dк. Компенсационный трубопровод соединен с регулирующим трубопроводом диаметром Dp в выходном колодце, Dк≥Dр. Выходной колодец и приемный резервуар насосной станции канализационных очистных сооружений соединены регулирующим и переливным трубопроводом. Лоток переливного трубопровода расположен выше шелыги регулирующего трубопровода. Механическая решетка с механизмом очистки расположена в выходном колодце. Датчики уровня расположены в выходном колодце до и после механической решетки. Выходы датчиков уровня соединены со входом блока управления механизмом очистки механической решетки. Выход блока управления механизмом очистки механической решетки соединен с электроприводом механизма очистки механической решетки. Обеспечивается повышение показателей экологической безопасности. 2 ил.

Изобретение относится к области водоотведения, а именно к способам моделирования аппаратов (устройств) биологической очистки сточных вод на канализационных очистных сооружениях. Способ определения концентрации рециркулирующего ила в системе биологической очистки сточных вод включает декомпозицию вторичного отстойника/отстойников на совокупность концентрически расположенных n подэлементов, имеющих первый и второй выходные потоки, n≥1, и расположенных по ходу движения входного потока от центра во все стороны в радиальном направлении. Затем определяют массовый расход ила во входном потоке вторичного отстойника/отстойников, расходы первого и второго выходного потоков концентрических подэлементов вторичного отстойника/отстойников, скорости осаждения i-ой фракции ила, оседающей в i-ом подэлементе вторичного отстойника, массовый расход ила в первом и втором выходных потоках i-го подэлемента вторичного отстойника, массовый расход ила в первом и втором выходных потоках вторичного отстойника, и концентрации ила в первом и втором выходном потоке вторичного отстойника. Предложенный способ определения концентрации загрязнений в очищенных сточных водах и концентрации ила в рециркуляционном потоке системе биологической очистки сточных вод позволяет определять концентрации веществ в потоках с учетом происходящих процессов в аппаратах (устройствах), что обеспечивает повышение качества и надежности биологической очистки сточных вод. 4 ил.

Изобретение относится к охране окружающей среды. Устройство для разделения активного ила на фракции содержит корпус 1, образованный вертикальной боковой стенкой 2 и дном 3, опору 4, ферму 5, присоединенную к опоре 4 и выполненную с возможностью поворота относительно неё, подводящий 6 и отводящий 7 трубопроводы, средство 8 для отвода осветленной жидкой среды, систему 9 для сбора ила, запорно-регулирующую арматуру 21, выполненную с возможностью дистанционного изменения количества ила, подаваемого на обработку и/или в рециркуляционный поток, сборный канал 22 и соединённый с ним второй отводящий трубопровод 23. Система 9 для сбора ила выполнена в виде по меньшей мере двух илососов 10 и системы трубопроводов 13. Каждый из илососов 10 выполнен в виде илосборника 14, расположенного на дне корпуса 1, илового насоса 15 и вертикального трубопровода 16. Система трубопроводов 13 выполнена в виде горизонтальных трубопроводов, жестко закрепленных на вращающейся ферме 5, в количестве, равном количеству илососов 10, с возможностью подачи ила на обработку и/или в рециркуляционный поток. Илососы 10 присоединены к горизонтальным трубопроводам через подвижные соединения 20, выполненные в виде гофрированных резиновых патрубков, и выполнены с возможностью перемещения вдоль оси горизонтальных трубопроводов. Иловые насосы 15 выполнены с возможностью изменения расхода перекачиваемого ила. Устройство позволяет сепарировать активный ил на объемы, содержащие активный ил разного возраста, что повышает эффективность биологической очистки сточных вод за счет использования активного ила с высокими окислительными свойствами. 3 ил.

Изобретение относится к области метеорологии и может быть использовано для определения местных климатических параметров ливневых дождей. Сущность: устанавливают на местности один автоматический дождемер. В течение заданного временного интервала осуществляют запись текущих значений времени и количества выпавших за это время осадков. Рассчитывают силу каждого дождя. Формируют выборку из ливневых дождей, сила которых превышает установленное значение, и сортируют их в порядке убывания. Определяют множество чисел случаев выпадения ливневых дождей данной силы. Формируют множество сумм случаев выпадения ливневых дождей. Формируют множество средней повторяемости однократного превышения сил дождя в течение заданного временного интервала. Формируют множество периодов однократного превышения сил дождя. Формируют множество климатических констант. Определяют климатическую константу как среднее значение из множества климатических констант. В различных точках местности устанавливают дополнительные автоматические дождемеры. Выполняют измерения, аналогичные указанным выше, и формируют выборку из ливневых дождей, сила которых превышает установленное значение. Формируют общую выборку, объединяя данную выборку и выборку, сформированную по результатам измерений, полученных одним автоматическим дождемером. Технический результат: снижение продолжительности работ, повышение точности определения местных климатических параметров ливневых дождей. 3 з.п. ф-лы, 4 ил.

Способ относится к области водоотведения, а также к способам моделирования аппаратов (устройств) биологической очистки сточных вод на канализационных очистных сооружениях. Система биологической очистки содержит камеры смешения, аэротенки, отстойники. Аэротенк делится на зоны анаэробной обработки и оксидной обработки. Указанные зоны делятся на подэлементы. Концентрации загрязнений в очищаемых сточных водах и концентрации веществ в системе биологической очистки сточных вод определяют в потоках с учетом происходящих процессов в аппаратах (устройствах) внутри каждого элемента. При этом выходной поток подэлемента является входным потоком последующего подэлемента системы. Технический результат: расширение области применения способа очистки сточных вод, повышение качества и надежности биологической очистки сточных вод. 3 ил.

Изобретение относится к области систем водоотведения и может быть использовано для обоснования параметров трубопроводных сетей. Способ для универсального гидравлического расчета безнапорных сетей водоотведения поверхностных сточных вод включает создание схемы безнапорных сетей водоотведения поверхностных сточных вод или поверхностных сточных вод и хозяйственно-бытовых и/или производственных сточных вод, декомпозицию ее на цепочки элементов схемы в виде одного и более последовательно соединенных элементов схемы, расположенных между входными и выходными по ходу движения воды колодцами цепочек элементов схемы, в качестве входных параметров схемы принимают параметры, характеризующие интенсивность и продолжительность дождей для местности, а расчет схемы осуществляют с применением расчетных модулей цепочек элементов схемы. Техническим результатом является расширение области применения и снижения трудоемкости расчетов. 2 з.п. ф-лы, 4 ил.

Устройство предназначено для гашения гидравлических ударов в трубопроводах различного назначения. Устройство содержит трубопровод, полый непроточный демпфирующий элемент, выполненный в виде регулирующей пружины и последовательно соединенных камеры, соединительного патрубка с установленным в нем упором и входного фланца. Гидравлический узел содержит цилиндрическую камеру с входным основанием и выходным основанием, промежуточный патрубок, присоединенный к выходному основанию, причем выходной фланец расположен соосно трубопроводу, отводной патрубок, расположенный под прямым углом к трубопроводу. При этом расстояние между выходным фланцем и трубопроводом меньше расстояния между выходным основанием и отводным патрубком. Предохранительная разрушающаяся мембрана состоит из разрушающейся части, зажатой между входным фланцем полого непроточного демпфирующего элемента и выходным фланцем гидравлического узла, и концентрически расположенной упорной части. При этом регулирующая пружина соединяет упор с упорной частью. Технический результат – повышение надежности гашения гидравлических ударов, возникающих при неправильном использовании оборудования, установленного на трубопроводах. 3 ил.

Изобретение относится к области санитарной техники и может быть использовано при отведении и очистке сточных вод в общесплавных системах водоотведения. Система оснащена блоком транспортировки сточных вод, содержащим, по меньшей мере, коллектор, по меньшей мере, одну локальную сеть водоотведения, соединенную с коллектором, переливной трубопровод, соединенный с локальной сетью водоотведения, и устройство аварийного перелива, установленное на переливном трубопроводе. Устройство аварийного перелива выполнено в виде запорно-регулирующего устройства с приводом. Система дополнительно снабжена, по меньшей мере, одним датчиком дождя, подключенным к устройству передачи данных о дождях при помощи канала связи, по меньшей мере, одним датчиком уровня воды в локальной сети водоотведения, установленного в точке/точках выхода воды на поверхность и подключенного к устройству передачи данных об уровнях при помощи канала связи, блоком управления, подключенным к устройству передачи данных об уровнях с помощью канала связи, к приводу запорно-регулирующего устройства с помощью канала связи, к устройству передачи данных о дождях с помощью канала связи. Обеспечивается расширение области применения и повышение надежности системы. 2 ил.

Изобретение относится к области водоотведения. Способ состоит в предварительном выполнении разбиения бассейна или всей сети водоотведения, к которой подключены водоотводы абонентов, на m непересекающихся районов. Разбивку осуществляют так, чтобы водоотводы любого из абонентов подключались к сети водоотведения только одного непересекающегося района, а количество выпусков воды из непересекающихся районов было минимальным, преимущественно одним. Регистрацию наличия признаков отклонений осуществляют при выявлении на выпуске/выпусках воды непересекающихся районов превышения допустимых значений контролируемого параметра. Дополнительно проводят обследование непересекающихся районов, в которых зарегистрировано наличие признаков отклонений, включающее определение и анализ видов деятельности абонентов, местоположения, конструктивных особенностей их зданий и сооружений, которые указывают на возможное наличие признаков отклонений и определяют перспективных абонентов. Проверку контролируемого параметра на превышение предельно допустимых значений осуществляют только у перспективных абонентов, сточная вода которых поступает к выбранной точке, расположенной на выпуске/выпусках районов, в которых зарегистрировано наличие признаков отклонений. Создают гидравлическую модель сети водоотведения, в которой в качестве исходных данных принимают фактическое водопотребление абонентов, осуществляют гидравлическое моделирование и определяют изменения значений расчетного расхода в сухую погоду в зависимости от времени t суток. Проводят измерения фактических расходов сточных вод в течение k суток на выпуске/выпусках воды непересекающихся районов и бассейна водоотведения, k ≥ 2. Устанавливают минимальные значения фактических расходов сточных вод на выпуске/выпусках бассейна водоотведения в интервалах времени суток, = 24 часа, n - количество интервалов за сутки, i =1, 2, …, n, , j =1, 2, …, k, - фактический расход сточных вод на выпуске/выпусках бассейна водоотведения в интервале времени в j-е сутки. Определяют коэффициенты отклонения бассейна водоотведения путем деления значений минимальных фактических расходов сточных вод на значения расчетных расходов сточных вод на каждом интервале . Устанавливают минимальные значения фактических расходов сточных вод на выпуске/выпусках непересекающихся районов в интервале времени Δti суток, = 24 часа, n - количество интервалов за сутки, i =1, 2, …, n, h =1, 2, …, m, , j =1, 2, …, k, - фактический расход сточных вод на выпуске h в интервале времени в j-е сутки. Определяют коэффициенты отклонения непересекающихся районов путем деления значений минимальных фактических расходов сточных вод на значения расчетных расходов сточных вод на каждом интервале . Определяют среднее значение коэффициентов отклонения бассейна водоотведения и среднее значение коэффициентов отклонения для каждого непересекающегося района . В качестве контролируемого параметра принимают среднее значение коэффициентов отклонения расходов сточных вод непересекающихся районов , в качестве признаков отклонений принимают превышение среднего значения коэффициентов отклонения расходов сточных вод непересекающегося района над средним значением коэффициентов отклонения расходов сточных вод бассейна водоотведения . Обеспечивается повышение эффективности регистрации наличия признаков отклонений в системе водоотведения. 11 ил.

Изобретение относится к области систем водоотведения. Система содержит множество сетей водоотведения, разделенных на m зон, m≥1, в состав которых включены узлы учета расхода сточных вод, установленные на выходах из каждой зоны, снабженные средствами вывода информации, по меньшей мере один датчик количества атмосферных осадков с возможностью определения интенсивностей дождей, блок определения водопотребления в зонах, блок определения водоотведения в зонах, к входу которого подключены выходы средств вывода информации узлов учета расхода сточных вод, блок оценки объема атмосферных осадков в зонах, к входу которого подключены выходы по меньшей мере одного датчика количества атмосферных осадков, блок оценки водоотведения в зонах от индивидуальных источников водоснабжения, блок формирования зональных баз данных, содержащих поля данных интервалов времени k, водопотребления водоотведения водоотведения от индивидуальных источников водоснабжения объема атмосферных осадков к входу которого подключены выходы блока определения водопотребления в зонах, блока определения водоотведения в зонах, блока оценки объема атмосферных осадков в зонах, блока оценки водоотведения в зонах от индивидуальных источников водоснабжения, блок первичной выборки данных из зональных баз данных по условию равенства нулю объема атмосферных осадков за сутки, к входу которого подключен выход блока формирования зональных баз данных. Блок формирования зональных баз данных выполнен с возможностью формирования полей данных интервалов времени k продолжительностью Δt, n - количество интервалов за сутки, i=1, 2, …, n. Блок первичной выборки данных из зональных баз данных по условию равенства нулю объема атмосферных осадков за сутки выполнен с возможностью осуществления выборки по условию равенства нулю объема атмосферных осадков за предыдущие и текущие сутки. Система дополнительно снабжена базой данных водопотребления абонентов, выход которой присоединен к входу блока определения водопотребления в зонах, блоком формирования минимальных фактических значений объемов водоотведения в зонах за каждый интервал времени Δt в течение сухих суток, h=1, 2, …, m, k=1, 2, …, n, - фактические значения объемов водоотведения на выходах из зон h в интервалы времени k продолжительностью Δt, к входу которого подключен выход блока первичной выборки данных, блоком гидравлического моделирования, выполненным с возможностью формирования расчетных значений объемов водоотведения в зонах за каждый расчетный интервал времени Δt в течение сухих суток, блоком определения степени отклонения объемов водоотведения в зонах, выполненным с возможностью формирования коэффициентов отклонения, которые определяются путем деления минимальных фактических значений объемов водоотведения в зонах на расчетные значения объемов водоотведения в зонах на каждом интервале продолжительности Δt, к входу которого подключены выход блока формирования минимальных фактических значений объемов водоотведения и выход блока гидравлического моделирования, блоком выявления балластных притоков сточных вод в зонах, выполненным с возможностью предварительного выявления перспективных абонентов в зоне, где коэффициенты отклонения будут наибольшими по сравнению с другими зонами, к входу которого подключен выход блока определения степени отклонения объемов водоотведения в зонах. Обеспечивается расширение области применения и повышение достоверности системы. 9 ил.

Изобретение относится к области водоотведения. Система содержит приемный и сборный резервуары, вакуумный насос, центробежный насос, два вентилятора, отводные трубопроводы, всасывающий трубопровод. Система дополнительно снабжена жилым модулем, состоящим из жилой части жилого модуля и технического подпола жилого модуля, подсобным модулем, состоящем из рабочей части подсобного модуля и технического подпола подсобного модуля, межмодульным шлюзом, по крайней мере одним санитарно-техническим прибором и трубопроводом стока, промежуточным трубопроводом, двумя автоматическими запорными органами, обратным клапаном, датчиком давления, электрическим двигателем вакуумного насоса, электрическим двигателем центробежного насоса, двумя электрическими двигателями вентиляторов, тремя подающими воздуховодами, двумя подводящими воздуховодами, двумя воздуховодами предварительного нагрева, тремя промежуточными воздуховодами, тремя автоматическими воздушными тройниками с заслонками, автоматической воздушной заслонкой, всасывающим воздуховодом, двумя отводящими воздуховодами, двумя узлами подготовки воздуха с двумя регулирующими устройствами узлов подготовки воздуха, двумя воздуховодами вентиляции, тремя датчиками температуры, двумя датчиками контроля наполнения, программируемым контроллером с каналами связи. Жилой модуль соединен с подсобным модулем с помощью модульного шлюза. По крайней мере один трубопровод стока, первый подающий воздуховод, первый воздуховод предварительного нагрева расположены в жилом модуле. Первый отводной трубопровод, первый и второй автоматические запорные органы, первый вентилятор с электрическим двигателем первого вентилятора, первый промежуточный воздуховод, первый автоматический воздушный тройник с заслонками, приёмный резервуар с первым датчиком температуры и первым датчиком контроля наполнения находятся в техническом подполе жилого модуля. По крайней мере один санитарно-технический прибор, первый узел подготовки воздуха с первым регулирующим устройством узлов подготовки воздуха, первый воздуховод вентиляции, программируемый контроллер находятся в жилой части жилого модуля. Второй подающий воздуховод, второй воздуховод предварительного нагрева, промежуточный трубопровод расположены в подсобном модуле. Обратный клапан, второй вентилятор с электрическим двигателем второго вентилятора, второй промежуточный воздуховод, второй автоматический воздушный тройник с заслонками, центробежный насос с электрическим двигателем центробежного насоса, расположены в техническом подполе подсобного модуля. Сборный резервуар со вторым датчиком температуры, датчиком давления и вторым датчиком контроля наполнения, всасывающий воздуховод, вакуумный насос с электрическим двигателем вакуумного насоса, третий промежуточный воздуховодом, третий автоматический воздушный тройник с заслонками, второй узел подготовки воздуха со вторым регулирующим устройством узлов подготовки воздуха, второй вентиляционный воздуховод, автоматическая воздушная заслонка расположены в рабочей части подсобного модуля. По крайней мере один санитарно-технический прибор соединен с первым отводным трубопроводом с помощью по крайней мере одного трубопровода стока. Первый отводной трубопровод соединен с приемным резервуаром в верхней точке приемного резервуара. Первый подводящий воздуховод, первый вентилятор с электрическим двигателем первого вентилятора, первый промежуточный воздуховод, первый автоматический воздушный тройник с заслонками соединены последовательно. Первый автоматический воздушный тройник с заслонками соединен с первым узлом подготовки воздуха посредством первого подающего трубопровода и первого трубопровода предварительного нагрева, причем первый трубопровод предварительного нагрева проходит через приемный резервуар. Первый вентиляционный воздуховод соединен с первым узлом подготовки воздуха. На первый отводящий трубопровод установлен первый автоматический запорный орган между трубопроводами стока и приемным резервуаром. Приемный резервуар с установленными в нём первым датчиком температуры и первым датчиком контроля наполнения в нижней точке соединен со сборным резервуаром в верхней точке посредством всасывающего трубопровода, с установленным на нем вторым автоматическим запорным органом. Второй подводящий воздуховод, второй вентилятор с электрическим двигателем второго вентилятора, второй промежуточный воздуховод, второй автоматический воздушный тройник с заслонками соединены последовательно. Второй автоматический воздушный тройник с заслонками соединен со вторым узлом подготовки воздуха посредством второго подающего трубопровода и второго трубопровода предварительного нагрева, причем второй трубопровод предварительного нагрева проходит через сборный резервуар. В сборный резервуар установлены второй датчик температуры, датчик давления и второй датчик контроля наполнения. Сборный резервуар соединен с всасывающим воздуховодом в верхней точке. Всасывающий воздуховод, с установленной на нем автоматической воздушной заслонкой, вакуумный насос с электрическим двигателем вакуумного насоса, третий промежуточный воздуховод, третий автоматический воздушный тройник с заслонками соединены последовательно. Третий автоматический воздушный тройник с заслонками соединен с первым отводящим воздуховодом и со вторым узлом подготовки воздуха посредством третьего подающего воздуховода. Второй узел подготовки воздуха соединен со вторым вентиляционным воздуховодом и вторым отводящим воздуховодом. Промежуточный трубопровод, центробежный насос с электрическим двигателем центробежного насоса, отводящий трубопровод с установленным на нем третьим автоматическим запорным органом соединены последовательно. Сборный резервуар в нижней точке соединен с промежуточным трубопроводом. Один конец двух подводящих воздуховодов и двух отводящих воздуховодов расположены за пределами жилого и подсобного модулей. Третий датчик температуры расположен за пределами жилого, подсобного модулей и межмодульного шлюза. Программируемый контроллер соединен с тремя автоматическими запорными органами, тремя автоматическими воздушными тройниками с заслонками, автоматической воздушной заслонкой, тремя датчиками температуры, двумя датчиками контроля наполнения, двумя электрическими двигателями вентиляторов, электрическим двигателем вакуумного насоса, электрическим двигателем центробежного насоса, двумя регулирующими устройствами узлов подготовки воздуха посредством каналов связи. Обеспечивается повышение показателей энергоэффективности, расширение области применения. 1 ил.

Изобретение относится к области водоснабжения. Устройство содержит водосборник, холодильную машину, воздуховод, вентилятор, по крайней мере один гидронасос. Холодильная машина содержит компрессор, конденсатор, трубопроводы хладагента, испаритель, выполненный в виде по крайней мере одного теплоотводящего элемента. Воздуховод выполнен в виде вертикального и горизонтального участков, соединенных между собой отводом. Устройство дополнительно снабжено воздухозаборником, воздушным фильтром, источником высокого напряжения с отрицательной и положительной клеммами, электропроводом, озонатором, состоящим из по крайней мере двух параллельных цилиндров с осевыми изолированными проволочными электродами, по крайней мере одной секцией теплообмена, состоящей из входного теплообменного элемента, соединенного с гидронасосом с помощью входного трубопровода, выходного теплообменного элемента, соединенного с гидронасосом с помощью выходного трубопровода, циркуляционного трубопровода, соединяющего входной и выходной теплообменные элементы. Воздухозаборник установлен вертикально, выполнен расширяющимся вниз и в верхней части соединен с вертикальным участком воздуховода. Воздушный фильтр и озонатор установлены последовательно относительно движения воздуха внутри вертикального участка воздуховода. Осевые изолированные проволочные электроды озонатора подсоединены к отрицательной клемме источника высокого напряжения посредством электропровода. Входные и выходные теплообменные элементы установлены внутри горизонтального участка воздуховода. Теплоотводящие элементы и вентилятор установлены последовательно относительно движения воздуха внутри горизонтального участка воздуховода между входными и выходными теплообменными элементами. Конденсатор установлен внутри горизонтального участка воздуховода после теплообменных элементов. Водосборник соединен с горизонтальным участком воздуховода между отводом и вентилятором. Обеспечивается расширение области применения. 1 ил.

Система относится к области водоотведения и/или водоснабжения для оптимизации инвестиционных потоков при модернизации (реконструкции) систем водоотведения и/или водоснабжения. Технический результат заключается в обеспечении оптимального выбора последовательности вовлечения элементов системы водоотвода и или водоснабжения с учетом фактических и эталонных значений показателей, получаемых в результате эксплуатации. Система включает модуль анализа диагностируемых параметров с возможностью ввода фактических значений, модуль определения эксплуатационных затрат и модуль определения оптимальной выборки. 4 ил.

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении арсенала технических средств. Система содержит два объекта управления, модуль анализа диагностируемых параметров, содержащий блок анализа диагностируемых параметров, блок ввода эталонных диагностируемых параметров, причем в качестве объектов управления принимают системы водоотведения, блок анализа диагностируемых параметров выполнен с возможностью ввода фактических значений целевых показателей надежности, качества, энергетической эффективности объектов управления, блок ввода эталонных диагностируемых параметров выполнен с возможностью ввода плановых значений целевых показателей надежности, качества, энергетической эффективности объектов управления, а система дополнительно снабжена модулем ввода характеристик объекта управления, модулем определения эксплуатационных затрат объектов управления, содержащим блок определения эксплуатационных затрат объектов управления при фактических значениях целевых показателей надежности, качества. 5 ил.

Изобретение относится к измерительной технике, в частности к системам мониторинга притока воды. Система оперативного диагностирования притока воды включает модуль перекачки воды, приёмный резервуар с подводящим трубопроводом, модуль контрольно-измерительных приборов, модуль анализа диагностируемых параметров, который дополнительно снабжён блоками ввода геометрических характеристик приёмного резервуара, ввода геометрических характеристик подводящего трубопровода, анализа откачки воды из приёмного резервуара, а модуль контрольно-измерительных приборов дополнительно снабжён датчиками уровня воды, установленными на подводящем трубопроводе и датчиком уровня воды, установленным в приёмном резервуаре, модуль перекачки воды дополнительно снабжён запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе между датчиком уровня воды, установленным на подводящем трубопроводе, и приёмным резервуаром. При этом выходы всех устройств помощи каналов связи подключены к входу блока анализа водопритока. Техническим результатом является расширение области применения. 2 ил.

Изобретение относится к области водоснабжения. Способ состоит в измерении напора во всех контрольных точках сети, вычислении разности между полученными значениями напоров и заданными, определении диктующей точки с минимальным алгебраическим значением разности, выравнивании действительного значения напора в диктующей точке с заданным значением напора. На первом этапе проводят гидравлическое моделирование системы водоснабжения и определяют места расположения контрольных точек на сети, накапливают статистическую информацию о расположении диктующей точки в зависимости от времени суток и определяют алгоритм определения диктующей точки k в зависимости от времени суток, k ∈ 1, 2, …, n, где n - общее количество контрольных точек. Обеспечивается снижение эксплуатационных затрат и расширение области применения. 3 ил.

Изобретение относится к области водоотведения. Канализационная насосная станция содержит приемный резервуар, трубопровод подачи стоков, по меньшей мере, два насоса, соединенные с напорными трубопроводами с обратными клапанами. Устройство дополнительно снабжено всасывающими трубопроводами насосов, соединяющие приемный резервуар с насосами, по меньшей мере, двумя напорными водоводами, по меньшей мере, двумя вертикальными колоннами, по меньшей мере, двумя противонаправленными обратными клапанами, соединительной гребенкой, соединенной, по меньшей мере, с двумя напорными водоводами, по меньшей мере, с двумя противонаправленными обратными клапанами, по меньшей мере, с двумя напорными трубопроводами так, что точки соединения напорных трубопроводов и противонаправленных обратных клапанов совпадают. Вертикальные колонны соединены с противонаправленными обратными клапанами, обратные клапаны расположены между насосами и соединительной гребенкой, а противонаправленные обратные клапаны установлены так, что при движении жидкости вверх они закрываются, а при движении вниз – открываются. Вертикальные колоны в верхних точках вертикальных колонн соединены с атмосферой на уровне Н≥Нн вд+П, где Нн вд - разница высотных отметок верхней точки напорных водоводов и верхней точки соединительной гребенки, П - потери напора в напорном водоводе от места его соединения с соединительной гребенкой до отметки верхней точки напорных водоводов. Обеспечивается повышение показателей надежности устройства. 2 ил.

Изобретение относится к области водоснабжения. Система водоснабжения содержит водопроводную сеть мегаполиса, разделённую на зоны, соединённые между собой водоводами, источники питания сети водой, зональные насосные станции с всасывающими трубопроводами, параллельно установленными насосами с напорными трубопроводами, соединёнными с напорными магистральными трубопроводами подачи воды в зоны, зональные запасно-регулирующие ёмкости, соединённые по крайней мере с одним источником питания сети водой и зональными насосными станциями при помощи всасывающих трубопроводов. Система дополнительно снабжена водопроводной сетью по меньшей мере одного пригорода мегаполиса, соединённой с водопроводной сетью мегаполиса пригородными водоводами и с напорными трубопроводами пригородной насосной станции с параллельно установленными насосами. Система также снабжена пригородной запасно-регулирующей ёмкостью, соединенной с всасывающими трубопроводами по меньшей мере одной пригородной насосной станции, оборудованной параллельно установленными насосами, и пригородным источником питания сети водой, выполненным в виде последовательно соединенных при помощи пригородного трубопровода сырой воды пригородного водозабора и пригородного узла водоподготовки. Кроме того, система снабжена водопроводной сетью по меньшей мере одной пригородной зоны, соединённой с водопроводной сетью мегаполиса зонными водоводами, региональными водоводами, соединёнными с водопроводной сетью по меньшей мере одного пригорода, с водопроводной сетью по меньшей мере одной пригородной зоны, с по меньшей мере одной зональной запасно-регулирующей ёмкостью и водопроводной сетью мегаполиса. Дополнительно система снабжена региональной запасно-регулирующей ёмкостью, соединенной с всасывающими трубопроводами региональной насосной станции, оборудованной параллельно установленными насосами, и региональным источником питания сети водой, выполненным в виде последовательно соединенных при помощи регионального трубопровода сырой воды регионального водозабора и регионального узла водоподготовки. Обеспечивается снижение эксплуатационных затрат и повышение надежности системы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области водоотведения. Способ состоит в том, что оценку осуществляют методом расчета в одиннадцать этапов. На первом этапе выполняют трассировку дождевой сети, на следующем этапе разбивают дождевую сеть на n расчетных участков. На третьем этапе разбивают территорию бассейна водоотведения на n площадей стока так, чтобы каждому i-му расчетному участку дождевой сети соответствовала –ая площадь стока, i = 1, …, n. Далее вычисляют площади стока , выбирают средний коэффициент покрытия или средний коэффициент стока , определяемые соответственно как средневзвешенные величины в зависимости от значений коэффициентов покрытия для различного рода покрытий или как средневзвешенные значения Ψi для различных видов поверхностей водосбора. Затем выбирают значение периода P однократного превышения расчетной интенсивности дождя, год. Далее определяют расчетную интенсивность q20 дождя продолжительностью 20 мин, л/с-га, и справочные параметры: n, Υ – безразмерные параметры, зависящие от географического положения местности; mr - среднее количество дождей за год, зависящие от географического положения местности. На восьмом этапе определяют в зависимости от времени протекания дождевых стоков по трубам до рассчитываемого сечения удельный расход с единицы площади по зависимости n, Υ, mr, ) или по зависимости n, Υ, mr, ), где - расчетная продолжительность дождя, мин; , где - время поверхностной концентрации, мин; - время протекания дождевых стоков по уличным лоткам, мин; - время протекания дождевых стоков по трубам до рассчитываемого сечения, мин. На девятом этапе строят в зависимости от времени протекания дождевых стоков по трубам до рассчитываемого сечения график удельного расхода n, Υ, mr, ) или график удельного расхода n, Υ, mr, ) при постоянных значениях n, Υ, mr, . Далее определяют для любого i-го участка дождевой сети справочный коэффициент βi, учитывающий заполнение свободной ёмкости сети в момент возникновения напорного режима, время протекания дождевых стоков по трубам до рассчитываемого сечения и определяют по одному из построенных графиков рассчитывают для любого i-го участка дождевой сети расход дождевых вод по формуле *, где – расчетный коэффициент, учитывающий заполнение свободной ёмкости i-го участка дождевой сети в момент возникновения напорного режима. Дополнительно определяют максимальную фактическую q20ф интенсивность дождя продолжительностью 20 мин в течение фактического или прогнозного дождя, в качестве расчетной интенсивности дождя q20 принимают фактическую q20ф интенсивность дождя, а расчетный коэффициент , учитывающий заполнение свободной ёмкости i-го участка дождевой сети в момент возникновения напорного режим определяют по функции =, значение которой при = равно или близко по значению βi. Обеспечивается расширение области применения. 1 з.п. ф-лы, 11 ил.

Изобретение относится к способу неразрушающего инструментального обследования канализационных тоннельных коллекторов. Для обследования используют беспилотный летательный аппарат (БПЛА), управляемый с наземной базовой станции и выполненный с возможностью зависания и перемещений в разные стороны, устанавливают на БПЛА полезную нагрузку для его управления и для проведения обследования технического состояния участков канализационных тоннельных коллекторов. Обеспечивается увеличение функциональных возможностей при проведении разведки и технического обследования канализационных тоннельных коллекторов. 6 ил.

Изобретение относится к способу обследования закрытых подземных выработок с применением беспилотных летательных аппаратов. Для этого для получения разведовательной информации используют не менее трех беспилотных летательных аппаратов (БПЛА), оснащенных полезной нагрузкой для проведения обследований. При этом первый БПЛА является ведущим, остальные - ведомыми. Ведущий БПЛА занимает нижний высотный эшелон, второй БПЛА – промежуточный, третий – верхний. Допустимые расстояния БПЛА от предельных границ полета определяются безопасностью полета и наличием устойчивой связи. При этом второй БПЛА является ретранслятором данных по радиоканалу от первого БПЛА третьему БПЛА, который также по радиоканалу связан с наземной базовой станцией управления, передавая полученные данные наблюдения ведомого БПЛА и получая команды управления полетом или изменения программы полета. При этом, если устойчивая связь не обеспечивается, производят возврат всех БПЛА в стартовое положение. Обеспечивается повышение качества обследования закрытых подземных выработок неразрушающими методами, увеличение дальности обследований. 6 ил.

Изобретение относится к области гидротехники, в частности к системе исследования гидравлических ударов в напорных трубопроводах, транспортирующих жидкости. Изобретение может быть использовано для исследования гидравлического удара в трубопроводах, возникающих при пуске и остановке насосов в различных режимах, закрытии клапанов и задвижек, аварийном отключении насосов, изменении режимов работы насосных агрегатов и ошибок обслуживающего персонала на предприятиях энергетики, нефтехимической промышленности, коммунального водо- и теплоснабжения. 2 ил.

Изобретение относится к области гидротехники, в частности к системе трубопроводов, транспортирующих жидкости. Изобретение может быть использовано для гашения гидравлического удара в трубопроводах, возникающих при закрытии клапанов и задвижек, аварийном отключении насосов, изменении режимов работы насосных агрегатов и ошибок обслуживающего персонала на предприятиях энергетики, нефтехимической промышленности, коммунального водо- и теплоснабжения. Устройство предназначено для гашения гидроударов в системах напорных трубопроводов, транспортирующих жидкости. Устройство содержит участок центрального трубопровода, соединенного с входным патрубком, входящим вовнутрь цилиндрической камеры, расположенного так, что конец входного патрубка на некотором расстоянии от стенки камеры, к которой присоединен выходной фланец, и жидкость изливается в цилиндрическую камеру. В нижней части цилиндрической камеры располагается отводной патрубок, соединенный с продолжением трубопровода, куда уходит жидкость. Выходной фланец соединяется с входным фланцем посредством болтового соединения. Между фланцами зажата предохранительная разрушающаяся мембрана, рассчитанная на воздействие определенного давления, при превышении которого она ломается, открывая жидкости доступ в камеру. Входной фланец соединен с патрубком, который в свою очередь соединен с камерой. Технический результат заключается в повышении надежности работы устройства, упрощении ремонта и снижении стоимости его эксплуатации. 1 ил.

Изобретение относится к области санитарной техники и может быть использовано при отведении сточных вод общесплавных систем водоотведения. Узел перераспределения стоков включает в себя бассейн канализования и дополнительный бассейн канализования, межбассейновую насосную станцию с подводящим трубопроводом и напорной линией, межбассейновый коллектор, выполненный с возможностью в самотечном режиме транспортировать воду из дополнительного бассейна канализования в бассейн канализования. При этом подводящий трубопровод присоединен к подводящему коллектору бассейна канализования, а напорная линия - к межбассейновому коллектору. Кроме того, узел снабжен запорно-регулирующим устройством с приводом, установленным на подводящем трубопроводе, и по меньшей мере одним запорно-регулирующим устройством с приводом, установленным на подводящем коллекторе бассейна канализования, по меньшей мере одним запорно- регулирующим устройством с приводом, установленным на межбассейновом коллекторе, по меньшей мере одним датчиком уровня воды в приемном резервуаре, управляющим устройством, выполненным с возможностью управлять приводами запорно-регулирующего устройства, установленного на подводящем коллекторе бассейна канализования, и приводом запорно-регулирующего устройства, установленного на подводящем трубопроводе в зависимости, по меньшей мере, от сигнала датчика уровня воды в приемном резервуаре. Изобретение обеспечивает повышение показателей надежности системы. 1 ил.

Изобретение относится к области систем водоотведения. Способ состоит в том, что выделяют для упомянутого случайного процесса его характеристики, строят для исследуемого случайного процесса в соответствии с априорной информацией о нем математическую модель, после чего загружают построенную математическую модель в память процессорного устройства. В качестве математической модели принимают вероятностно-статистическую модель изменения состояний системы, а в качестве характеристики нестационарного случайного процесса принимают вероятности переходов из текущего состояния в последующее. На первом этапе дополнительно накапливают статистическую информацию об изменении во времени расходов сточных вод, поступающих из общесплавной системы водоотведения, и на основании ее определяют минимальное qmin и максимальное qmax значения расходов сточных вод. Интервал расходов [qmin, qmax] разбивают на участки-полуинтервалы с шагом Δq и формируют конечное множество значений возрастающих действительных чисел R1=[q1, … qi-1, qi, qi+1, …, qn1], где q1=qmin, qn1=qmax, qi+1-qi=Δq, формируют множество натуральных N1 чисел состояний системы N1=[1, 2, … i-1, i, i+1, …, n1], элементами которых являются порядковые номера множества R1, на основании анализа статистической информации определяют частоты переходов wi,j из текущего i-го состояния в последующее j-е состояние в виде матриц W1(t) частот переходов для случаев возрастания притока на предыдущем (t-1)-м часе суток, t=[1, 2, …, 24]; i=1, 2, …, n1; j=1, 2, …, n1; матриц W2(t) частот переходов для случаев убывания притока на предыдущем (t-1)-м часе суток, t=[1, 2, …, 24]; i=1, 2, …, n1; j=1, 2, …, n1; проводят аппроксимационный анализ частот переходов wi,j и определяют функциональную зависимость для плотности вероятности переходов ƒ(j) из текущего i-го состояния в последующее j-е состояние в виде: зависимости для случаев возрастания притока на предыдущем (t-1)-м часе суток, зависимости для случаев убывания притока на предыдущем (t-1)-м часе суток, на дополнительном этапе с применением построенной вероятностно-статистической модели изменения состояний системы генерируют случайный процесс расходов сточных вод, поступающих из общесплавной системы водоотведения. На каждом шаге генерации фиксируют час t суток, направление изменения упомянутых расходов на предыдущем (t-1)-м часе суток, и если зафиксировано возрастание притока, то вероятности переходов Pi,j из текущего i-го состояния в последующее j-е состояние определяют как а если зафиксировано убывание упомянутых расходов на (t-1)-м часе суток, то вероятности переходов Pi,j определяют как осуществляют переход в другие состояния в соответствии с выбранными вероятностями переходов Pi,j. Обеспечивается расширение функциональных возможностей. 7 ил.

Изобретение относится к области систем водоснабжения и водоотведения и может быть использовано для оптимизации их работы в сухую погоду и периоды дождей. Технический результат заключается в обеспечении управления безнапорных систем управления, в которых расход не постоянный, а увеличивается за счет подключения участков древовидной схемы водоотведения. Разделяют систему водоотведения на конечное число n независимых бассейнов водоотведения, в качестве параметров потоков системы водоотведения принимают объемы водоотведения vi, i=1, 2, …, n, для каждого i-го независимого бассейна водоотведения за период времени Δt. В качестве автоматизированных органов управления принимают межбассейновые насосные станции и/или межбассейновые транспортные магистрали с запорно-регулирующими органами, соединяющими между собой транспортные магистрали независимых бассейнов. Проводят оптимизацию по критерию минимальных платежей за перекачку воды в сухую погоду или периоды расчетных дождей и по критерию минимальных сбросов сточных вод в окружающую среду в периоды сверхрасчетных дождей. 3 ил.

Изобретение относится к области систем водоснабжения и водоотведения и может быть использовано для оптимизации их работы в сухую погоду и периоды дождей. Способ содержит этапы, на которых: а) получают данные о значениях параметров потоков системы, передают их на пункт управления и записывают в оперативную память вычислительной машины; б) решают на ЭВМ задачу математического программирования, используя в качестве исходных данных значения параметров потоков системы, и получают в качестве решения значения оптимальных параметров потоков; в) передают на автоматизированные органы управления значения установок их положения, обеспечивающих перераспределение оптимальных параметров потоков сточных вод в соответствии с решением задачи математического программирования. До этапа а) осуществляют разделение всей системы водоотведения на конечное число n независимых бассейнов водоотведения, каждый из которых содержит по меньшей мере сети водоотведения, подключенные к транспортной магистрали, которая при помощи главной насосной станции соединена с очистными сооружениями с выпуском очищенных сточных вод в окружающую среду, по меньшей мере один выпуск сточных вод в окружающую среду, соединенный с транспортной магистралью и выполненный с возможностью отвода неочищенных сточных вод в окружающую среду при переполнении транспортной магистрали. В качестве параметров потоков системы водоотведения принимают объемы водоотведения , i=1, 2, …, n, для каждого i-го независимого бассейна водоотведения за период времени Δt. В качестве автоматизированных органов управления принимают межбассейновые насосные станции и/или межбассейновые транспортные магистрали с запорно-регулирующими органами, соединяющими между собой транспортные магистрали независимых бассейнов. Определяют максимальные параметры потоков системы для каждого i-го независимого бассейна водоотведения за период времени Δt без выбросов неочищенных сточных вод в окружающую среду, где , , - свободные объемы коллекторов и колодцев, транспортной магистрали и сетей водоотведения в момент t0 решения задачи математического программирования, - максимальная подача ГНС i-го независимого бассейна водоотведения. Формируют матрицу максимальных производительностей автоматизированных органов управления, характеризующую пределы возможных подач сточных вод из i-го независимого бассейна водоотведения в j-й независимый бассейн водоотведения, в которой значения для главных диагональных и несуществующих элементов равны нулю. Экспериментально определяют для каждого i-го независимого бассейна водоотведения за период времени Δt экспериментальную зависимость vi=f(Hi) параметров потоков системы vi по меньшей мере от прогнозных значений объемов осадков Hi. Получают данные о прогнозных значениях объемов осадков Hi, i=1, 2, …, n, для каждого i-го независимого бассейна водоотведения за период времени Δt. Получают данные о значениях параметров потоков системы путем расчета значения параметров потоков системы vi для каждого i го независимого бассейна водоотведения за прогнозный период времени Δt по экспериментальной зависимости vi=f(Hi). На этапе б) задачу математического программирования решают по критерию минимальных платежей за перекачку воды, т.е. в качестве решения формируют матрицу оптимальных производительностей автоматизированных органов управления, при реализации которых суммарная оплата электропотребления независимых бассейнов водоотведения и межбассейновых насосных станций будет минимальной и , i=1, 2, …, n, i≠k, . В случае отсутствия такого результата принимают решение задачу математического программирования решать по критерию минимальных сбросов сточных вод в окружающую среду, т.е. в качестве решения формируют матрицу оптимальных производительностей автоматизированных органов управления, при реализации которых суммарный сброс сточных вод в окружающую среду будет минимальным, т.е. при i=1, 2, …, n, i≠k, . Обеспечивается снижение капитальных затрат и расширение функциональных возможностей. 3 ил.

Изобретение относится к области санитарной техники и может быть использовано при отведении сточных вод общесплавных систем водоотведения. Регулируемая система содержит блок (1) транспортировки сточных вод, содержащий по меньшей мере коллектор (2). Система дополнительно снабжена сетями (3) водоотведения, соединенными с коллектором (2), переливным трубопроводом (4), соединенным с сетями (3) водоотведения и устройством аварийного перелива (5), содержащим по меньшей мере корпус, прикрепленную к верхней части корпуса проушину, поворотную захлопку, жестко соединенную с косынкой, которая связана с проушиной с возможностью выполнения вращения, барьерный груз с переменной массой, присоединенный к косынке или захлопке, обеспечивающий закрытие захлопки при уровне воды ниже минимального значения поверхности земли над коллектором и сетями водоотведения. Обеспечивается повышение показателей надежности системы. 4 ил.

Изобретение относится к области санитарной техники и может быть использовано при отведении и очистке сточных вод общесплавных систем водоотведения. Система содержит по меньшей мере блок (1) транспортировки сточных вод, содержащий последовательно соединенные между собой подводящий коллектор (2) и главную насосную станцию (3) с приемным резервуаром (4) и подающими трубопроводами (5), в котором подводящий коллектор (2) соединен с приемным резервуаром (4), блок (6) очистки сточных вод с приемной камерой (7). Подающие трубопроводы (5) соединены с приемной камерой (7) блока (6) очистки сточных вод. Система дополнительно снабжена запорно-регулирующим устройством (8), установленным на подводящем коллекторе (2) до приемного резервуара (4) по ходу движения воды, сетями водоотведения (9), регулирующим резервуаром (10) с подводящим трубопроводом/трубопроводами (11) и установленным на нем запорно-регулирующим органом (12), с отводящим трубопроводом/ трубопроводами (13) и установленным на нем запорно-регулирующим органом (14). Днище регулирующего резервуара (10) расположено выше подводящего коллектора (2). Сети водоотведения (9) соединены с подводящим трубопроводом/трубопроводами (11) регулирующего резервуара (10), отводящий трубопровод/трубопроводы (13) которого соединен с подводящим коллектором (2) до запорно-регулирующего устройства (8) по ходу движения воды. Обеспечивается повышение показателей экологической безопасности системы. 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано при отведении сточных вод общесплавных систем водоотведения. Саморегулируемая система водоотведения включает блок 1 транспортировки сточных вод, содержащий коллектор 2, сети водоотведения 3, соединенные с коллектором 2, переливным трубопроводом 4, соединенным с сетями водоотведения 3 и устройством аварийного перелива 5. Устройство аварийного перелива 5 содержит корпус, прикрепленную к корпусу проушину, поворотную захлопку, жестко соединенную с косынкой, которая связана с проушиной с возможностью выполнения вращения, барьерный груз с переменной массой, присоединенный к косынке или поворотной захлопке, обеспечивающий закрытие поворотной захлопки при уровне воды ниже минимального значения поверхности земли над коллектором 2 и сетями водоотведения 3. Переливной трубопровод 4 перед устройством аварийного перелива 5 имеет сужение и/или отвод, обеспечивающий горизонтальное расположение поворотной захлопки в закрытом виде. Изобретение позволяет повысить показатели надежности системы. 3 ил.

Изобретение относится к области водоотведения сточных вод. Управляемая система содержит блок транспортировки сточных вод, содержащий по меньшей мере коллектор. Система дополнительно снабжена по меньшей мере одной локальной сетью водоотведения, соединенной с коллектором, переливным трубопроводом, соединенным с локальной сетью водоотведения и устройством аварийного перелива, содержащим по меньшей мере корпус, прикрепленную к корпусу проушину, поворотную захлопку, жестко соединенную с косынкой, которая связана с проушиной с возможностью выполнения вращения, прижимное устройство с регулируемым усилием, воздействующее на косынку или поворотную захлопку для прижатия поворотной захлопки к корпусу, обеспечивающее ее закрытие при уровне воды ниже минимального значения поверхности земли над локальной сетью водоотведения. Диаметр участка локальной сети водоотведения между точками присоединения к ней переливного трубопровода и коллектора меньше диаметра участка до точки присоединения к ней переливного трубопровода по ходу движения воды. Обеспечивается повышение показателей надежности системы. 1 з.п. ф-лы, 3 ил.

РефератИзобретение относится к области санитарной техники и может быть использовано при отведении и очистке сточных вод общесплавных систем водоотведения. Система включает, по меньшей мере, блок транспортировки сточных вод, блок очистки сточных вод, сети водоотведения и регулирующий резервуар. Блок транспортировки сточных вод содержит последовательно соединенные между собой подводящий коллектор и главную насосную станцию с приемным резервуаром и подающими трубопроводами. Подводящий коллектор соединен с приемным резервуаром, блок очистки сточных вод с приемной камерой. Система дополнительно снабжена запорно-регулирующим устройством, установленным на подводящем коллекторе до приемного резервуара по ходу движения воды, сетями водоотведения, регулирующим резервуаром с подводящим трубопроводом/трубопроводами и установленным на нем запорно-регулирующим органом, с отводящим трубопроводом/трубопроводами и установленным на нем запорно-регулирующим органом. Днище регулирующего резервуара расположено выше подводящего коллектора и ниже минимального значения поверхности земли над подводящим коллектором. Сети водоотведения соединены с подводящим трубопроводом/трубопроводами регулирующего резервуара, отводящий трубопровод/трубопроводы которого соединены с подводящим коллектором до запорно-регулирующего устройства по ходу движения воды. Техническим результатом изобретения является повышение показателей экологической безопасности системы. 2 з.п. ф-лы, 4 ил.

Изобретение относится к раздельным системам водоотведения. Система содержит множество сетей водоснабжения (1) и водоотведения (6), разделенные на зоны так, что зоны сетей водоснабжения совпадают с зонами сетей водоотведения, в состав которых включены узлы (2) учёта воды со средствами вывода информации (3). Система дополнительно содержит узлы (7) учёта расхода сточных вод со средствами вывода информации (8), датчики количества атмосферных осадков (9), блок (10) определения водопотребления в зонах, блок (11) определения водоотведения в зонах, блок (12) оценки объёма атмосферных осадков в зонах, блок (13) оценки водоотведения в зонах от индивидуальных источников водоснабжения, по меньшей мере один датчик (14) уровня воды в водоёме (15) населенного пункта, блок (16) формирования зональных баз данных, содержащих поля данных даты k, водопотребления , водоотведения , водоотведения от индивидуальных источников водоснабжения , уровней воды в водоёме населенного пункта , объёма атмосферных осадков, к входу которого подключены выходы блока (10) определения водопотребления в зонах, блока (11) определения водоотведения в зонах, блока (12) оценки объёма атмосферных осадков в зонах, блока (13) оценки водоотведения в зонах от индивидуальных источников водоснабжения и по меньшей мере одного датчика (14) уровня воды в водоеме (15) населенного пункта, блок (17) оценки баланса, выполненный с возможностью формирования множества n пар значений и соответствующих им аргументов , а также определения функции притока воды, которая в точках принимает значения, как можно более близкие к значениям или равные этим значениям. Узлы учёта воды установлены на входе в каждую зону водоснабжения. Блок оценки объёма атмосферных осадков в зонах выполнен с возможностью оценки количества осадков за сутки. Блок оценки баланса выполнен с возможностью формирования множества n пар значений и соответствующих им аргументов из зональных баз данных, с возможностью определения по зависимости , с возможностью формирования аргументов в виде функции =. Система дополнительно снабжена блоком (18) ввода прогнозных значений объёма атмосферных осадков в зонах, блоком (19) ввода прогнозных значений уровней воды в водоёме населенного пункта, блоком (20) ввода прогнозных значений водопотребления в зонах, блоком (21) ввода прогнозных значений водоотведения от индивидуальных источников водоснабжения , блоком (22) прогнозирования водоотведения, выполненным с возможностью оценки прогнозных значений в зонах в виде . Выход блока (16) формирования зональных баз данных соединен с входом блока (17) оценки баланса. Выходы блока (18) ввода прогнозных значений объёма атмосферных осадков в зонах, блока (19) ввода прогнозных значений уровней воды в водоёме населенного пункта, блока (20) ввода прогнозных значений водопотребления в зонах, блока (21) ввода прогнозных значений водоотведения от индивидуальных источников водоснабжения соединены с входом блока (22) прогнозирования водоотведения. Обеспечивается повышение точности оценки баланса подачи и отведения воды и расширение области применения системы. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области систем водоотведения и может быть использовано при эксплуатации канализационных насосных станций. При осуществлении способа эксплуатации канализационной насосной станции контролируют расход перекачиваемой жидкости насосным агрегатом и продолжительность работы насосного агрегата между выводами в резерв. Осматривают и ремонтируют структурный элемент станции при выходе значений измеряемых параметров за пределы критических. В качестве структурного элемента принимают приемный резервуар. В процессе ремонта структурного элемента осуществляют его очистку от накопившегося осадка. Обеспечивается увеличение наработки насосных агрегатов между ремонтами. Повышается энергетическая эффективность канализационных насосных станций. 3 ил.

Изобретение относится к области систем водоснабжения и может быть использовано для их оптимизации. Задачей настоящего изобретения является снижение электропотребления и затрат на эксплуатационное содержание за жизненный цикл. Способ энергосбережения в системах водоснабжения заключается в том, что измеряют напор воды на выходе насоса, сравнивают измеренный напор с заданным значением и минимизируют отклонение измеряемого напора от заданного значения путем воздействия на частоту вращения электродвигателя насоса, при этом формируют заданное значение напора в виде суммы минимального напора и переменной составляющей, при этом в качестве насоса применяют группу параллельно установленных насосов. Создают гидравлическую модель системы водоснабжения, включающую насос, систему трубопроводов, подводящих воду к входу насоса, и систему трубопроводов, присоединенных к выходу насоса и подающих воду в распределительную сеть, проводят гидравлическое моделирование системы водоснабжения, определяют требуемое значение минимального напора воды на выходе насоса при условии обеспечения требуемого минимального напора у всех потребителей, определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл. Выделяют в распределительной сети зоны c требуемым минимальным напором. Снижают требуемое значение минимального напора воды на выходе насоса из условия обеспечения требуемого минимального напора потребителей зоны и определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл. Повторяют этап снижения требуемых значений минимальных напоров воды на выходе насоса из условий обеспечения требуемых минимальных напоров потребителей зоны и определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл. Определяют требуемое значение минимального напора воды на выходе насоса при условии обеспечения минимального напора на входе в зону и определяют затраты на эксплуатационное содержание системы водоснабжения за жизненный цикл. Формируют множество пар значений затрат на эксплуатационное содержание системы водоснабжения за жизненный цикл и соответствующих им аргументов - требуемых значений минимальных напоров воды на выходе насоса, множество дополнительных пар значений затрат на оплату электрической энергии и соответствующих им аргументов - требуемых значений минимальных напоров воды на выходе насоса. И определяют заданное значение минимального напора воды на выходе насоса. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области систем водоснабжения и водоотведения и может быть использовано для определения законов распределения случайной величины подачи насосных станций. В способе осуществляют разделение насосной станции на конечное число элементов с заданными вероятностными параметрами и осуществляют вероятностное моделирование с определением закона распределения подачи насосной станции. В качестве вероятностных параметров элементов принимают интенсивности внезапных отказов, устраняемых в процессе текущих ремонтов, и интенсивности их восстановлений, интенсивности постепенных отказов, устраняемых в процессе капитальных ремонтов, и интенсивности их восстановлений. При этом случайное событие перехода в состояние отказа с интенсивностью постепенных отказов осуществляется только, если фактическое число элементов, находящихся в капитальном ремонте, меньше допустимого, а вероятностное моделирование осуществляют посредством обработки данных результатов имитационного моделирования работы насосной станции в течение его продолжительности. Изобретение направлено на расширение функциональных возможностей способа. 7 ил.

Система содержит абонентский комплект (1), установленный в водомерном узле (2) абонента. Абонентский комплект включает в себя контроллер (3), счетчик (4) учета потребления воды (4) и приемно-передающее устройство (5) абонента, выполненное в виде GSM-модема, для передачи информации по беспроводной сети (6) в сервер (7) обработки и хранения данных, связанный с сервером (10) управления расчетами, которые установлены в централизованной диспетчерской (8) поставщика воды. Абонентский комплект снабжен энергонезависимой памятью (9), хранящей индивидуальный номер абонента и соединенной со счетчиком учета потребления воды и с контроллером, выполненной с возможностью накопления показаний счетчика учета потребления воды с дискретностью за период. Сервер управления расчетами выполнен с возможностью определения типа абонентов (12) и числа жителей у абонентов жилого типа по индивидуальному номеру абонента. Система снабжена модулем индивидуальной выборки данных по типам абонентов, вход которого соединен с выходами сервера обработки и хранения данных и сервера управления расчетами, аналитическим модулем (13), выполненным с возможностью получения зависимостей неравномерности потребления воды абонентами жилого типа от числа жителей, вход которого соединен с выходами модуля индивидуальной выборки данных по типам абонентов и сервера управления расчетами. Повышается надежность и расширяется функциональность системы. 1 з.п. ф-лы, 4 ил.

Изобретение относится к системам водоотведения, а именно к способам оценки контроля сбросов сточных вод от выпусков (водоотводов) абонентов в канализацию. Способ содержит регистрацию наличия в воде признаков загрязнителей и анализ пробы сливной воды на превышение предельно допустимых значений загрязнителей в сливной воде. В нем выполняют разбиение сети водоотведения населенного пункта на непересекающиеся районы с минимальным количеством, преимущественно одним, выпусков воды из них. Регистрацию наличия в воде признаков загрязнителей осуществляют при превышении в анализе пробы воды, отобранной в случайное время и в случайно выбранной точке, расположенной на выпуске/выпусках воды непересекающихся районов, допустимых концентраций. На этапе обследования непересекающихся районов определяют перспективных абонентов, а анализ пробы сливной воды на превышение предельно допустимых значений загрязнителей в сливной воде выполняют только у перспективных абонентов. Техническим результатом изобретения является снижение капитальных затрат, необходимых для выявления абонентов, в сливных водах которых превышаются предельно допустимые значения загрязнителей в сливной воде, т.к. отсутствует необходимость устанавливать дорогостоящие роботы-пробоотборники на водовыпусках каждого абонента населенного пункта. 8 з.п. ф-лы, 1 ил., 2 табл.

 


Наверх