Патенты автора Чурбанов Михаил Федорович (RU)

Изобретение относится к области оптического материаловедения и может быть использовано для создания специальных оптических приборов и функциональных элементов ИК-фотоники - устройств для передачи ИК-излучения для микрохирургии глаза, бесконтактных волоконных пирометров для контроля температуры тела при лечении онкологических заболеваний, волоконных разветвителей для среднего ИК-диапазона, волоконных лазеров, волоконно-оптических микрорезонаторов и многих других. Волоконные ИК-световоды на основе высокочистых сульфидно-мышьяковых стекол могут быть использованы для контроля температуры генераторов в условиях сильных магнитных полей, ионизирующей радиации, для передачи тепловой энергии через жгуты из ИК-световодов. В волоконном световоде из сульфидно-мышьяковых стекол, состоящем из сердцевины и оболочки, сердцевина выполнена из стекла состава от 40 до 42 ат.% мышьяка и от 58 до 60 ат.% серы, а отражающая оболочка выполнена из стекла состава от 38 до 42 ат.% мышьяка и от 58 до 62 ат.% серы. Технический результат от использования изобретения заключается в снижении уровня оптических потерь в спектральном интервале 5-6 мкм. 1 табл., 3 пр.

Изобретение относится к неорганической химии и может быть использовано в волоконной инфракрасной оптике, полупроводниковом приборостроении для изготовления особо чистых халькогенидных стекол и волоконных световодов на их основе, а также в полупроводниковой технике. Для получения особо чистого продукта очищаемый селен последовательно подвергают высоковакуумной дегазации его расплава при температуре 250-270°С, высоковакуумной дистилляции и термической обработке паров селена при температуре 600-650°С. Проводят химико-термическую обработку расплава и паров селена при температуре 600-650°С в атмосфере инертного газа гелия с добавкой кислорода при давлении 400-650 мм рт.ст. с последующим вымораживанием летучих продуктов реакций. Трехступенчатую высоковакуумную дистилляцию проводят с малой (2-1)10-4 см3/см2⋅с и уменьшающейся от стадии к стадии до (2-1)10-5 см3/см2⋅с удельной скоростью испарения. Обеспечивается получение селена с повышенной степенью чистоты по водородсодержащим примесям, воде (H2O), селеноводороду (H2Se), сероводороду (H2S), примесям углерод- и кислородсодержащих веществ, гетерофазным примесным включениям из диоксида кремния, углерода, металлов. 3 з.п. ф-лы, 1 ил.
Изобретение относится к материалам для инфракрасной оптики, а именно к способу получения особо чистых халькогенидных стекол, легированных редкоземельными элементами. Способ получения особо чистых халькогенидных стекол, легированных редкоземельными элементами, включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление, закалку стеклообразующего расплава и отжиг стекла. Перед загрузкой редкоземельных элементов проводят высокотемпературную обработку редкоземельного элемента в форме простого вещества или соединения в парах серы в режиме динамического вакуума при температуре 600–700°С. Технический результат – снижение содержания в стеклах примесей, поглощающих в спектральном диапазоне 2–10 мкм, и, как следствие, увеличение оптической прозрачности стекол. 2 пр.
Изобретение относится к способу получения изотопно-обогащенного стеклообразного диоксида кремния SiО2, обогащенного изотопами кремния 28Si или 29Si или 30Si, который может быть использован для получения изотопов кремния, оптических материалов, волоконных световодов и пленок из изотопно-обогащенного диоксида кремния. Способ включает синтез алкоксида изотопно-обогащенного кремния Si(OR)4 (R - СН3, С2Н5, i-C3H7) при взаимодействии неорганических соединений, в качестве которых используют изотопно-обогащенные тетрахлориды кремния 28SiCl4, 29SiCl4, 30SiCl4, с безводным спиртом общей формулы R-OH (R - СН3, С2Н5, i-C3H7) при температуре 20-50°С и 2-4-кратном избытке спирта относительно стехиометрического соотношения, гидролиз алкоксида изотопно-обогащенного кремния, осушку и термообработку полученного геля гидратированного изотопно-обогащенного диоксида кремния. Изобретение обеспечивает увеличение выхода изотопно-обогащенного стеклообразного диоксида кремния до 96%, упрощение и повышение экономичности способа, исключение необходимости использования сложного оборудования и больших количеств дефицитных изотопно-обогащенных веществ и безопасность процесса. 4 з.п. ф-лы, 2 пр.
Изобретение относится к способу получения особо чистых халькогенидных стекол системы германий-селен. Способ включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку. В качестве источника германия используют селенид германия(II). Селенид германия (II) получают пропусканием паров селена над германием в динамическом вакууме, проводят сублимационную очистку полученного селенида германия(II) и загружают его в вакуумированный кварцевый реактор вакуумным испарением в количестве, необходимом для получения стекла заданного химического состава. Технический результат – снижение содержания в стеклах примесей, поглощающих в спектральном диапазоне 2-10 мкм, и, как следствие, увеличении оптической прозрачности стекол. 1 з.п. ф-лы, 2 пр.
Изобретение относится к области получения высокочистых веществ и касается разработки способа получения изотопнообогащенного германия, который может быть использован в микроэлектронике, ИК-оптике, нанофотонике, фундаментальных физических исследованиях. Исходным соединением для получения моноизотопных 72Ge, 73Ge, 74Ge, 76Ge является обогащенный одним изотопом германия моногерман, полученный в обогащенном состоянии последовательным выделением при центрифужном разделении моногермана с природным изотопным составом. Выделение германия осуществляют пиролизом моногермана при температуре 350-450°C и давлении 1050-1100 мбар. Его проводят в кварцевом трубчатом реакторе, внутренние стенки которого покрыты слоем пиролитического углерода. После осаждения поликристаллического германия его сплавляют непосредственно в реакторе в компактный слиток. Обеспечивается получение изотопов германия с высокой степенью изотопной и химической чистоты с выходом продукта более 95%. 2 з.п. ф-лы, 4 пр.
Изобретение относится к получению изотопнообогащенного тетрахлорида кремния, который может быть использован для получения изотопов кремния, оптических материалов, волоконных световодов и пленок. Способ получения изотопнообогащенных тетрахлоридов кремния 28SiCl4, 29SiCl4, 30SiCl4 включает взаимодействие изотопнообогащенных тетрафторидов кремния 28SiF4, 29SiF4, 30SiF4 и хлорида алюминия(III) при температуре 250-400°C в закрытом реакторе при 2-10-кратном избытке хлорида алюминия(III) относительно стехиометрического соотношения и продолжительности контакта реагентов 30-60 ч. Изобретение обеспечивает высокий выход изотопнообогащенного тетрахлорида кремния, повышение экономичности способа и безопасность процесса. 2 пр.
Изобретение относится к особо чистым стеклам для инфракрасной оптики. Технический результат – снижение содержания оптически активных примесей. Германий, серу, йод загружают в реактор, плавят и подвергают закалке стеклообразующий расплав. В качестве источника йода используют йодид германия(IV). Из шихты получают промежуточные сплавы. Целевой стеклообразующий расплав получают термическим разложением промежуточных сплавов в двухсекционном реакторе в режиме динамического вакуума при управляемой скорости нагрева и выводе йодида германия(IV) из промежуточных сплавов при их разложении до достижения заданного макросостава стеклообразующего расплава. 2 пр.

Заявляемое изобретение относится к области химии и касается шихты для получения теллуритно-молибдатных стекол, которые могут найти применение в оптике для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптоэлектронных приборах видимого, ближнего и среднего ИК-диапазонов. Теллуритные стекла, содержащие оксиды редкоземельных элементов, могут быть использованы для изготовления компактных магнитооптических фильтров для защиты лазерных установок от отраженного излучения. Шихта для получения теллуритных стекол содержит смесь сложных оксидов элементов, бинарные оксиды которых являются компонентами стекла. Основным компонентом является Te2MoO7, к которому добавляют сложные оксиды теллура и трехвалентных элементов или сложные оксиды молибдена и вольфрама и трёхвалентных элементов (редкоземельных элементов и висмута). Техническим результатом от использования предлагаемого изобретения является повышение оптической прозрачности теллуритно-молибдатных стекол с высоким содержанием в них триоксида молибдена в видимой и ближней ИК-областях спектра. 3 н. и 3 з.п. ф-лы, 2 табл., 5 пр.

Заявляемая группа изобретений относится к области химии и касается составов шихты для получения теллуритных стекол, которые могут найти применение в оптике для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптоэлектронных приборах видимого, ближнего и среднего ИК диапазонов. Шихта для получения теллуритных стекол включает соединение теллура и соединение молибдена, или соединение теллура и соединение вольфрама. В качестве соединения теллура шихта содержит ортотеллуровую кислоту, а в качестве соединения молибдена - тетрагидрат гептамолибдата аммония при следующем соотношении компонентов, мас.%: тетрагидрат гептамолибдата аммония -10-52, ортотеллуровая кислота - остальное, или что в качестве соединения теллура она содержит ортотеллуровую кислоту, а в качестве соединения вольфрама она содержит декагидрат додекавольфрамата аммония при следующем соотношении компонентов, мас.%: декагидрат додекавольфрамата аммония - 6-39, ортотеллуровая кислота - остальное. Техническим результатом изобретения является повышение оптической прозрачности стекол в видимой и ближней ИК областях спектра. 2 н. и 6 з.п. ф-лы, 9 ил., 1 табл., 7 пр.
Изобретение относится к области химии, касается способа получения многокомпонентных теллуритных стекол, которые могут быть использованы для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптике и оптоэлектронных приборах видимого, ближнего и среднего ИК-диапазонов. Способ получения многокомпонентных теллуритных стекол включает плавление шихты, в качестве которой используют высушенный осадок, полученной путем воздействия аммиака на раствор неорганических кислот и солей, образованных элементами, оксиды которых являются компонентами стекла, и последующее охлаждение расплава. Осадок получают действием избытка аммиака на смесь водных растворов, неорганических кислот и солей, растворимых в воде, высушивание осуществляют при температуре 200-300°C, а плавление шихты осуществляют при температуре 700-800°C. Техническим результатом изобретения является повышение оптической прозрачности в видимой, ближней и коротковолновой областях ИК спектра, упрощение технологического процесса. 2 з.п. ф-лы, 6 пр.

Изобретение относится к химии, а именно к производству высокочистых стекол, которые могут быть использованы для изготовления оптических элементов, световодов и широкозонных полупроводников, применяемых в оптике и оптоэлектронных приборах ближнего и среднего ИК-диапазона. Задачей, на решение которой направленно заявляемое изобретение, является разработка способа получения высокочистых халькойодидных стекол, позволяющего уменьшить количество примесей, поступающих из материалов аппаратуры. Сущность предлагаемого способа получения высокочистых халькойодидных стекол заключается в том, что компоненты шихты постоянно поступают в проточный плазмохимический реактор, инициирование реакции взаимодействия халькогена и летучих йодидов производят плазменным разрядом, синтез стеклообразующих соединений проводят в условиях неравновесной плазмы высокочастотного емкостного разряда при пониженном давлении. Техническим результатом изобретения является снижение загрязняющих примесей в составе стекол. 2 табл., 2 пр.
Изобретение относится к неорганической химии, а именно к получению сульфидов р-элементов III группы Периодической системы, являющихся перспективными материалами для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Сульфиды р-элементов III группы Периодической системы получают взаимодействием серы и соответствующего р-элемента в вакуумированной кварцевой ампуле, при этом р-элемент используют в виде соответствующего йодида, синтез ведут в 2х-секционной ампуле, исходные компоненты помещают в нижнюю секцию, которую нагревают до температуры 250-400°С, после чего полученный сульфид прокаливают при температуре не выше 700°С. За счет проведения синтеза при достаточно низкой температуре способ позволяет существенно снизить загрязняющее действие материала аппаратуры. Изобретение позволяет получать особо чистые сульфиды р-элементов III группы Периодической системы, в которых содержание примесей переходных металлов, по данным масс-спектрального анализа, не превышает 0.5 ppm wt. Максимально возможный выход продукта составляет 82-97%. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к оптико-механической промышленности, в частности к оптическим материалам, применяемым в устройствах и приборах инфракрасной техники, и может быть использовано для изготовления защитных входных люков (окон), обеспечивающих надежное функционирование приборов
Изобретение относится к технологии получения солей карбоновых кислот, в частности уксусной, и касается разработки способа получения высокочистого безводного ацетата цинка
Изобретение относится к материалам для волоконной оптики и касается разработки способа получения особо чистых тугоплавких халькойодидных стекол, которые могут быть использованы для изготовления волоконных световодов, применяемых в оптике и оптоэлектронных приборах для ближнего и среднего ИК-диапазона

Изобретение относится к технологии неорганических соединений
Изобретение относится к волоконной оптике и к разработке способа получения высокочистых теллуритных стекол
Изобретение относится к волоконной оптике и касается разработки способа получения халькогенидных стекол системы As-S с низким содержанием примеси кислорода в виде гидроксильных групп, молекулярной воды, диоксида углерода и может быть использовано для получения волоконных световодов, применяемых в оптике и приборах для ближнего и среднего ИК-диапазона
Изобретение относится к области разделения стабильных изотопов и может быть использовано в полупроводниковой технике

Изобретение относится к волоконной оптике и касается разработки устройства двойного тигля и способа вытяжки световодов с его использованием из стекол, склонных к кристаллизации и содержащих макрокомпонент с повышенной летучестью, каковыми являются халькогенидные стекла и стекла на основе оксидов тяжелых металлов

 


Наверх