Патенты автора Глаголев Сергей Николаевич (RU)

Изобретение относится к смесительной технике, обеспечивающей получение многокомпонентных смесей, и может быть использовано в различных отраслях промышленности для смешивания сыпучих компонентов и добавок. Рециркуляционный смеситель содержит горизонтально установленные камеры, связанные загрузочными и разгрузочными патрубками с расположенными в них валами, несущими разнонаправленные лопастные устройства. В камере макросмешивания - однозаходными винтовыми лопастями, а в камере микросмешивания, со стороны загрузки, - попарно установленными двухзаходными винтовыми лопастями. Смеситель оснащен взаимосвязанными между собой и с камерами макросмешивания и микросмешивания камерой гомогенизации смеси основных компонентов и добавок и камерой смешивания добавок. Использование изобретения позволит расширить технологические возможности и повысить качество смесей. 4 з.п. ф-лы, 11 ил.

Изобретение относится к установке для переработки твердых коммунальных и промышленных отходов с использованием низкотемпературного термолиза. Технический результат - повышение эффективности термолизной переработки ТКО с различными физико-механическими характеристиками, повышение качества получаемой продукции, а также эксплуатационной надежности трубчатого реактора и его устройств. Установка для низкотемпературной термолизной переработки органических твердых коммунальных и промышленных отходов содержит трубчатый реактор с винтообразным транспортирующим органом непрерывного действия и герметизирующими загрузочными и разгрузочными устройствами с отдельными приводами, устройствами очистки, охлаждения и конденсации парогазовой смеси. Загрузочный питатель-затвор-дезагломератор установлен под углом к горизонтали α=45-90° и выполнен в виде последовательно установленных по ходу движения материала технологических блоков, включающих: закрепленные на одном валу транспортирующие шнеки, расположенный в коническом корпусе шнековый уплотнитель с закрепленной на конце двухзаходной винтовой лопастью, цилиндрический канал стабилизации плотности материала с перфорированными пластинами и окаймляющими корпус упругими уплотнителями, размещенными в герметичной обечайке с пластифицирующим жидким компонентом внутри, винтовой конический движитель уплотненной массы материала, расположенный в коническом корпусе с расширяющимся в сторону выгрузки материала диаметром, сопряженное с последним ножевое устройство, составленное из закрепленных на валу режущих пластин с заостренными по краям кромками, расположенных по винтовой поверхности в сторону выгрузки и углом смещения по окружности ϕ=90°, а также закрепленные на валу в дугообразном цилиндрическом выгрузочном раструбе, сопряженном с трубчатым реактором, двухвитковые составленные из прутков выгрузочные лопасти. При этом трубчатый реактор составлен из двух параллельно установленных в вертикальной плоскости цилиндрических корпусов с консольно установленными внутри спиралевидными транспортирующими органами и индивидуальными приводами, размещенными в выгрузочной части верхнего и загрузочной части нижнего цилиндрических корпусов, соединенных герметизирующей шахтой, в верхней части которой, на наружной поверхности спиралевидного транспортирующего органа верхнего цилиндрического корпуса, закреплена классифицирующая сетка отбора крупных включений термообработанной продукции. Причем образованный сетчатый цилиндр классификации материала сопряжен по горизонтальной оси с вертикально установленной колонной, внутри которой размещены герметизирующие пересыпные полки. В выгрузочной части нижнего цилиндрического корпуса расположен питатель-затвор с закрепленными на эксцентрично установленном валу дугообразными лопастями, соприкасающимися с герметизирующими пластинами. 6 з.п. ф-лы, 10 ил.

Изобретение направлено на расширение технологических возможностей использования способа низкотемпературной переработки органических твердых отходов, в том числе твердых коммунальных отходов с различными физико-механическими характеристиками. Способ низкотемпературной переработки органических твёрдых коммунальных отходов реализуют в трубчатом реакторе с винтообразным транспортирующим органом при температуре до 400-4500С, в среде циркулирующего теплоносителя и соответствующего разложения органических компонентов на технический углерод, жидкое углеводородное топливо, техническую воду и синтетический углеводородный газ. Новым в способе является то, что термолиз включает классификацию материалов на крупнозернистые и мелкозернистые фракции, при обеспечении герметизации процессов загрузки и выгрузки уплотненной шихты; создание регулируемых скоростных режимов движения термообрабатываемой шихты в термолизном реакторе; возвращение теплоносителя из зоны парогазовыделения в зону деструкции сырья в виде пара, а в завершение процесса, ввод в зону охлаждения конечного продукта воды, способствующей раскрытию пор и десорбции углеводородов. Для реализации способа предложена установка, содержащая трубчатый реактор с комбинированным винтообразным транспортирующим органом непрерывного действия, герметизирующими загрузочными и разгрузочными устройствами, устройствами очистки, охлаждения и конденсации парогазовой смеси. Загрузочный питатель-уплотнитель-затвор установки выполнен в виде, наклоненного под углом б=20-450 к горизонту питающего устройства с внутренним винтообразным рабочим органом. Винтообразный транспортирующий орган состоит из трёх частей, размещённых соответственно в трёх зонах. Часть винтообразного транспортирующего органа, расположенная в зоне загрузки материала, выполнена в виде шнека с постоянным шагом, средняя, цилиндрическая часть устройства выполнена в виде попарно установленных разнонаправленных двухзаходных геликоидальных лопастей, а коническая часть устройства, расположенная в зоне выгрузки, выполнена в виде конусообразного шнека с шагом, уменьшающимся в сторону выгрузки. На наружной поверхности двухзаходных геликоидальных лопастей, по их периметру, закреплен перфорированный классифицирующий корпус. В зоне выгрузки крупнозернистого и отсеянного мелкозернистого материала установлен герметизирующий питатель-затвор с дугообразными пластинами. Ротор герметизирующего питателя-затвора смещен относительно центра питателя вдоль центральной оси загрузочного патрубка мелкозернистого материала. Выгрузочный питатель-уплотнитель, установленный на выходе трубчатого реактора термолиза с винтообразным транспортирующим органом, выполнен в виде двухвитковой захватывающей лопасти, расположенной в цилиндрическом корпусе, сопряженном с его конической частью. Внутри конической части корпуса размещено уплотняющее винтовое устройство таким образом, что меньшая по диаметру винтовая лопасть сопряжена с выгрузочными однозаходными винтовыми лопастями постоянного диаметра. Лопасти расположены в цилиндрическом корпусе и повернуты относительно друг друга в направлении движения материала. Технический результат от реализации способа, осуществляемого при помощи предлагаемой установки, заключается в обеспечении высокоэффективного процесса переработки органических ТКО с различными физико-механическими характеристиками и физико-химическими свойствами, при исключении выброса загрязняющих веществ в атмосферу. Кроме того, повышается качество продукции, получаемой в результате его реализации. 2 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к области космического материаловедения, в частности к разработкам материалов, обеспечивающих дополнительную защиту элементной базы, отдельных узлов и блоков радиоэлектронной аппаратуры от повреждающего космического воздействия. Многослойный полимер-углеродный композит для защиты от космического воздействия включает полиимидное связующее, модифицированный наполнитель, два слоя углеродной ткани-полотна, керамическое покрытие на основе α-Al2O3 и покрытие из металлического молибдена. В качестве наполнителя используется модифицированный диоксид вольфрама WO2 при следующем соотношении компонентов: полиимид - 17,75-24,55 мас.%; модифицированный диоксид вольфрама WO2 - 36,83-50,54 мас.%; углеродная ткань-полотно - 1,59-1,94 мас.%; керамическое покрытие на основе α-Al2O3 - 13,29-16,21 мас.%; покрытие из металлического молибдена - 16,83-20,47 мас.%. Заявлен также способ получения многослойного полимер-углеродного композита. Изобретение направлено на получение многослойного полимер-углеродного композита для защиты от космического воздействия с высокими физико-механическими, радиационно-защитными и светоотражательными характеристиками.2 н.п. ф-лы.

Изобретение относится к переработке техногенных материалов и может быть использовано в различных отраслях промышленности: химической, энергетической, топливной, а также в промышленности строительных материалов для приготовления композиционных смесей с тонкоизмельченными волокнистыми материалами. Технологический модуль смешения техногенных волокнистых материалов состоит из последовательно установленных вертикального 1 и горизонтального 7 смесителей с лопастями. Лопасти вертикального смесителя 4 выполнены двухзаходными винтовыми, в виде геликоидальных поверхностей однонаправленного захода в сторону выгрузки материала. Лопасти 11, 13 горизонтального смесителя в загрузочной и выгрузочной части выполнены однозаходными винтовыми однонаправленными в сторону выгрузки материала. Между ними установлены противоположно направленные двухзаходные винтовые лопасти 12. Горизонтальный смеситель 7 содержит блок для механического предварительного уплотнения смеси, представленный внешним и внутренним конусами, выполненными двухконусными. Способ смешения техногенных волокнистых материалов включает смешение с органическим связующим, пароувлажнение и механическое уплотнение смеси. Смешение осуществляется в две стадии. На первой стадии происходит турбулентно-гирационное смешение. На второй стадии происходит рециркуляционное смешение с пароувлажнением. Изобретение обеспечивает смешение техногенных волокнистых материалов с различными физико-механическими характеристиками и повышение качества смеси путем постадийного высокоскоростного смешения смеси с организацией внутреннего рецикла на каждой стадии их смешения и последовательного увеличения ее плотности посредством механического предварительного уплотнения. 2 н.п. ф-лы, 4 ил.

Группа изобретений относится к переработке техногенных волокнистых материалов. Устройство содержит наклонный загрузчик, который соединен при помощи двух пневмоупругих питающих валков с ленточным конвейером с регулируемым углом наклона α=0° или 30°<α<50°. Наклонный загрузчик соединен с устройством измельчения, содержащим шредер и шнековый питатель, которые расположены над ленточным объемным дозатором, соединенным с молотковой дробилкой. Устройство смешения включает последовательно установленные вертикальный и горизонтальный турбулентные смесители. Последний содержит блок для предварительного уплотнения шихты, а устройство классификации и сушки гранул содержит барабанно-винтовой сушильный агрегат. Способ включает двухстадийное, с применением шредера, или одностадийное измельчение, при котором дополнительно вводятся механоактивированные или топливосодержащие добавки. Смешение композиционной смеси с органическим связующим осуществляется при предварительном пароувлажнении и уплотнении смеси. Полученные гранулы подвергают последовательной классификации и сушке или охлаждению в барабанно-винтовом сушильном агрегате. Использование группы изобретений позволит повысить качество получаемых из техногенных волокнистых материалов гранул. 1 ил.

Изобретение относится к области дорожного строительства, а именно к стабилизирующим добавкам, которые используются в асфальтобетонных смесях и могут найти применение при изготовлении дорожных покрытий при использовании щебеночно-мастичного асфальтобетона (ЩМА). Технический результат - снижение водонасыщения асфальтобетона при низком показателе стекания вяжущего, снижение липкости смеси и повышение физико-механических свойств. Стабилизирующая добавка для щебеночно-мастичной асфальтобетонной смеси, включающая органическое вяжущее, структурообразователь и воду, в качестве органического вяжущего содержит парафин, структурообразователя - целлюлозно-бумажные отходы и дополнительно включает известняковый минеральный порошок при следующем соотношении компонентов, мас. %: целлюлозно-бумажные отходы 70-80, известняковый минеральный порошок 8-14, парафин 8-12, вода - остальное. 4 табл., 5 ил.

Изобретение относится к оборудованию для измельчения и гомогенизации листовых, волокнистых материалов средней и малой прочности, например твердых бытовых отходов, растительного сырья или техногенных продуктов, в области производства строительных материалов. Установка содержит сопряженные цилиндрические камеры (1, 2) измельчения с роторами, средства для подачи исходного материала, добавок и отвода готовой продукции. Камеры образуют общий контур и разделены перегородкой (18). Ротор (7) первой камеры установлен эксцентрично и составлен из набора дисков (8). Диски закреплены на оси со смещением относительно друг друга по винтовой линии. Ротор второй камеры составлен из закрепленных на пальцах бил (23) и расположен внутри сетчатого барабана (36). Барабан окаймлен цилиндрической поверхностью камеры. Била второй камеры выполнены из набора стержневых элементов, собранных в пакет в виде щеток и жестко закрепленных одним концом на держателе. Изобретение обеспечивает интенсификацию процесса измельчения, улучшение гомогенизации и повышение качества перерабатываемой продукции. 7 з.п. ф-лы, 7 ил.

Изобретение относится к оборудованию для непрерывной сушки сыпучих и гранулированных материалов. Агрегат содержит раму с приводом и передачей, горизонтально установленный вращающийся барабан с внутренним радиусом r=(0,5…6)λ, где γ - длина СВЧ волны в свободном пространстве. В барабан вставлены загрузочное устройство, жестко прикрепленное к раме, транспортирующий шнек, жестко присоединенный к барабану, последний виток которого имеет высоту h ш 1 ≤ r − d о т в 2 , где dотв - диаметр отверстия в разгрузочной торцевой крышке, перемешивающие лопасти, жестко закрепленные с шагом pл=15…90° по внутренней поверхности барабана, высотой hл=(0,1…0,5)hш и разгрузочное отверстие. Отверстия запредельных волноводов совпадают с разгрузочным отверстием и жестко присоединены к наружной поверхности барабана, причем их суммарная площадь должна быть больше или равна площади разгрузочного отверстия. Волноводно-щелевой резонансный излучатель подключен к СВЧ-генератору. Сверху данного излучателя закреплено устройство удаления паровоздушной смеси, а снизу устройство подачи нагретого воздуха. Места соединения торцевых крышек с барабаном, а также места ввода вышеуказанных устройств герметизированы материалами, поглощающими высокочастотные электромагнитные излучения. Данное изобретение позволяет обеспечить непрерывный процесс сушки сыпучих материалов с равномерным распределением их по внутренней поверхности барабана. Упрощает конструкции устройств подачи нагретого воздуха и отбора влажного, ускоряет процесс сушки сыпучих материалов до минимального содержания влаги (не более 1,5-3%). 3 з.п. ф-лы, 2 ил.

Шнек-сепаратор состоит из вала, установленного в подвижных относительно корпуса подпружиненных опорах с подшипниками, обеспечивающих плотное беззазорное соприкосновение внешней поверхности витков шнека с перфорированным днищем корпуса или с перфорированной съемной сменной вставкой в сплошной корпус. В межвитковом пространстве шнека установлена дополнительная протирочная лопасть. Дополнительная лопасть одним концом закреплена на ступице вала, на длине межвиткового пространства шнека, а другим свободным концом подходит непосредственно к перфорированному днищу или вставке и заканчивается на некотором расстоянии от днища или вставки. Между свободным концом дополнительной лопасти и днищем или вставкой образуется технологический зазор, ограниченный по краям витками шнека. Дополнительная лопасть от места крепления к ступице вала до ее свободного конца выполнена в виде криволинейной поверхности, так, что в поперечном сечении пресса между днищем или вставкой, витками шнека и концами дополнительной лопасти образуется криволинейный клиновидный канал. У канала размер входного отверстия значительно превышает размер выходного отверстия, которым является технологический зазор между свободным концом дополнительной лопасти и днищем. При таком выполнении более полно отделяется влага из разделяемой массы без засорения отверстий перфорации при получении менее влажной густой фракции. 3 ил.

Изобретение относится к устройствам для измельчения материалов. Помольно-смесительный агрегат содержит закрепленные на станине вертикальные колонки с ползунами, прямоугольную раму, несущую три помольные камеры и соединенную шарнирно с ползунами и эксцентриковым валом. Вал установлен с возможностью вращения в опорных стойках и снабжен с двух сторон противовесами. Агрегат снабжен дополнительным полым валом, установленным в дополнительных внутренних опорах и кинематически связанным с эксцентриковым валом. Дополнительный полый вал снабжен осесимметрично расположенным водилом с двумя направляющими, несущими дополнительный противовес. Противовес имеет центральное отверстие со встроенной в него гайкой, взаимодействующей с ходовым винтом, связанным с сателлитом дифференциального механизма. Левая и правая шестерни механизма соединены с полуосями, размещенными внутри дополнительного вала и связанными противоположными концами с тормозными электромагнитными муфтами. Агрегат имеет систему автоматического управления, которая содержит программируемый контроллер. Технический результат заключается в повышении производительности агрегата с одновременным снижением его энергоемкости. 3 ил.

Изобретение относится к области строительства, а именно к способам и устройствам для изготовления спрессованных тел из сыпучих и вязкосыпучих материалов

Изобретение относится к области измельчения волокнистых материалов и может использоваться для измельчения и гомогенизации волокнистых материалов средней и малой прочности

Изобретение относится к устройствам для механического и пневмомеханического измельчения

Изобретение относится к строительному производству, в частности к оборудованию для изготовления полимерного заполнителя

 


Наверх