Патенты автора Захаренко Андрей Борисович (RU)

Изобретение относится к электрической машине с ротором, созданным по схеме Хальбаха. Электрическая машина содержит узел обмотки статора и ротор. Узел обмотки статора состоит из множества катушек. Ротор включает в себя множество внешних магнитов, выполненных в виде внешнего кольца Хальбаха. Корпус внешних магнитов соединен с множеством внешних магнитов и окружает их. Множество внутренних магнитов выполнены в виде внутреннего кольца Хальбаха. Обмотка расположена между множеством внутренних и внешних магнитов. Корпус внутренних магнитов соединен с множеством внутренних магнитов. Выходной вал соединен с внутренним корпусом магнитов. Направление намагниченности на внутреннем и внешнем кольцах Хальбаха согласованы так, чтобы магнитные потоки складывались. С внешней стороны внешнего кольца Хальбаха и с внутренней стороны внутреннего кольца Хальбаха расположены ярма из ферромагнитного материала. Магниты закреплены на ярмах. Внешнее и внутреннее кольца Хальбаха собраны из магнитов с цикличным повторением последовательности направления векторов намагниченности постоянных магнитов. Обмотка статора расположена на ферромагнитных зубцах, между которыми размещены датчики положения ротора. Достигается повышение КПД электрической машины. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники. Технический результат – улучшение энергетических характеристик. Электромашина с ротором, созданным по схеме Хальбаха, содержит узел обмотки, состоящий из множества катушек, причем множество катушек расположены в форме кольца, и ротор, включающий в себя множество внешних магнитов, выполненных в виде внешнего кольца Хальбаха, множество внутренних магнитов, выполненных в виде внутреннего кольца Хальбаха, причем обмотка расположена между множеством внутренних и внешних магнитов. Магниты внешнего кольца Хальбаха имеют следующую последовательность направления намагниченности: тангенциально, против часовой стрелки; радиально от центра; тангенциально, по часовой стрелке; радиально к центру. Во внутреннем кольце Хальбаха магниты намагничены в следующем порядке: тангенциально, по часовой стрелке; радиально от центра; тангенциально, против часовой стрелки; радиально к центру. Направления намагниченности на внутреннем и внешнем кольцах Хальбаха согласованы так, чтобы магнитный поток, созданный постоянными магнитами внутреннего и внешнего колец, складывался. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике, к электрическим машинам. Технический результат состоит в повышении э.д.с. и удельной мощности при небольших величинах тока якоря электромашины за счет намагничивания и сборки кольца Хальбаха ротора по оптимальной схеме, обеспечивающей наибольшую магнитную индукцию в зоне обмотки электромашины. Способ намагничивания и сборки кольца Хальбаха ротора по варианту 1, включает: сборку массива ненамагниченных анизотропных сегментов постоянного магнита внутри установочных колец ротора, определение оптимальных направлений ориентации намагничивания сегментов, позиционирование собранных ненамагниченных сегментов внутри установочных колец ротора так, что оптимальные направления ориентации их намагничивания выровнены в направлении линий магнитного потока намагничивающего устройства, возбуждение намагничивающего устройства импульсами постоянного тока в течение оптимальной длительности импульса. Намагничивающее устройство состоит из трех катушек, две из которых надеваются на постоянные магниты и соединены между собой встречно, а одна расположена перпендикулярно постоянному магниту на магнитном сердечнике. Намагничивание постоянных магнитов производится установкой на них катушек намагничивающего устройства и подачей постоянного напряжения. После намагничивания постоянных магнитов, перед компаундированием кольца снимают намагничивающее устройство разборкой установочных колец и снятием постоянных магнитов. Окончательная сборка кольца производится его компаундированием. Далее снимаются установочные разъемные кольца. Отличие варианта 2 состоит в том, что катушки намагничивающего устройства наматываются на магниты с зазором, позволяющим перемещать их от магнита к магниту, а снятие катушек производится их разматыванием. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к области магнитных измерений и может быть использовано при измерении магнитной индукции на поверхности постоянных магнитов. Способ измерения магнитной индукции постоянных магнитов содержит этапы, на которых осуществляют измерение магнитного поля системы с помощью датчика магнитного поля, при этом магнитное поле постоянных магнитов измеряется в зазоре цилиндрической магнитной системы, имитирующей магнитную систему реальной вращательной магнитоэлектрической машины и состоящей из внутреннего магнитопровода с размещенными на нем постоянными магнитами и внешнего магнитопровода, зазор между двумя ферромагнитными магнитопроводами имеет величину, позволяющую ввести в него щуп тесламетра и провести измерение магнитной индукции, при этом величина и равномерность зазора обеспечивается немагнитными клиньями. Технический результат – возможность измерения магнитной индукции с использованием имитатора магнитной системы магнитоэлектрической машины и датчика магнитного поля без использования реальной магнитной системы магнитоэлектрической машины. 7 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и измерительной технике и может быть использовано для определения углового положения ротора электродвигателей различных типов и других поворотных устройств. Техническим результатом является повышение массо-габаритных показателей и надежности. Датчик положения ротора выполнен без магнитопроводов статора и ротора. Обмотки статора и ротора выполнены на печатных платах, при этом угол поворота ротора определяется с повышенной точностью с помощью электронной схемы обработки. Датчик положения ротора преобразует угол поворота ротора в напряжение, пропорциональное функции угла поворота ротора. На статоре и роторе датчика размещены обмотки, сдвинутые между собой в пространстве. При вращении ротора с обмотки ротора, концы которой выведены на устройства токосъема, получают напряжение, пропорциональное функции угла поворота ротора. Для обеспечения высокой стабильности сдвига фаз трехфазное напряжение для питания обмотки статора генерируется микроконтроллером, обмотки статора и ротора выполнены печатным способом. Обмотка статора выполнена трехфазной, а обмотка ротора - в виде двух фаз, соединенных последовательно. Цифровое значение угла поворота ротора определяется с повышенной точностью при помощи электронной схемы обработки, построенной на основе компаратора и микроконтроллера. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к области машиностроения. Устройство содержит корпус из немагнитного материала, внутри которого выполнена цилиндрическая камера. Камера содержит магнитную жидкость в коллоидном состоянии. Корпус из немагнитного материала жестко крепится к внешней конструкции, подвергающейся низкочастотным вибрационным воздействиям. В камеру помещен магнит в форме прямого кругового цилиндра с возможностью его обволакивания содержащейся в камере магнитной жидкостью. В боковой стенке цилиндрической камеры по всей ее длине выполнена сужающаяся в ее внешнюю сторону выемка, а в нижней и верхней стенках цилиндрической камеры в их центральной части выполнены выпуклые элементы. Для получения максимального логарифмического декремента колебаний при частоте вибраций выполняется определенное соотношение, связывающее частоту с размерами и свойствами материалов компонентов устройства для гашения низкочастотных вибраций. Достигается расширение арсенала технических средств. 3 з.п. ф-лы, 2 ил.

Изобретение относится к антенной технике, в частности к антеннам космических аппаратов. Двухзеркальная антенна с механическим нацеливанием содержит систему поворотных зеркал, где зеркало контррефлектора расположено под углом 45° к оси вращения в горизонтальной плоскости, а зеркало рефлектора расположено под углом к оси вращения в вертикальной плоскости, привод вращения зеркал в горизонтальной плоскости с электродвигателем, привод вращения зеркал в вертикальной плоскости с электродвигателем, в волноводный тракт облучателя введен поляризатор, выход которого жестко соединен с входом облучателя, выполненного в виде конического рупора, ось которого совпадает с осью поляризатора. При этом относительно оси поляризатора с помощью электродвигателя вращается в горизонтальной плоскости первый кронштейн с жестко установленным на нем контррефлектором, что обеспечивает нацеливание луча антенны в горизонтальной плоскости в пределах сектора ±180°, на первом кронштейне установлен второй кронштейн, позволяющий обеспечить вынос установленного на нем рефлектора, вращающегося с помощью электродвигателя, и обеспечить нацеливание луча антенны в вертикальной плоскости в пределах сектора не менее ±105°. Технический результат заключается в возможности обеспечения секторов углов нацеливания антенны по углу места не менее ±105°. 5 з.п. ф-лы, 3 ил.

Группа изобретений относится к машиностроению и может быть использована в линейных электродвигателях. Маховик содержит корпус из немагнитного материала, внутри которого выполнена камера, содержащая магнитную жидкость в коллоидном состоянии. Корпус из немагнитного материала жестко крепится к внешней конструкции. В камеру помещены магниты в форме прямых круговых цилиндров (вариант 1) или прямых круговых цилиндрических колец (вариант 2) с возможностью их обволакивания содержащейся в камере магнитной жидкостью. Корпус представляет собой полый тор кольцевого сечения. Ротор составлен из магнитов, намагниченных в осевом направлении, и магнитных вставок между магнитами. Достигается снижение потерь на трение при нулевой и низких скоростях вращения ротора. 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, в частности к двигателям-маховикам, и может использоваться для систем ориентации и стабилизации космических аппаратов. Технический результат – уменьшение массы при сохранении значительного момента инерции индуктора и высокой электромагнитной мощности. Двигатель-маховик содержит якорь с m-фазной обмоткой, где m=2, 3, 4, 5, 6 …. - число фаз обмотки якоря, и индуктор с полюсами. Каждая из фаз состоит из катушек. Индуктор состоит из скрепленных между собой сердечников и намагниченных в осевом направлении постоянных магнитов, расположенных между сердечниками индуктора. При этом якорь и индуктор объединены между собой корпусом из немагнитного материала. Корпус представляет собой полый внутри тор кольцевого сечения. Катушки обмотки якоря закреплены с внешней стороны корпуса, а индуктор расположен внутри корпуса с возможностью вращения. Внутрь корпуса помещена смазка, которая представляет собой магнитную жидкость. 9 з.п. ф-лы, 6 ил.

Изобретение относится к космической технике и может использоваться при разработке космических аппаратов (КА). КА блочно-модульного исполнения включает блоки бортовой аппаратуры, один из блоков содержит служебную аппаратуру КА, а другой - целевую аппаратуру и датчики командно-измерительных приборов системы управления. Блок целевой аппаратуры объединен с блоком служебных систем через три шарнирные опоры. Блок служебных систем крепится к системе отделения через плиту, при этом между корпусом блока служебных систем и плитой крепления к системе отделения имеются три шарнира. Основу силовой конструкции блока служебных систем составляет треугольная призма, в углах оснований которой расположены шарниры. Система отделения КА крепится к переходной ферме разгонного блока ракеты-носителя также в трех точках, лежащих на лучах - продолжениях боковых ребер силовой призмы. Техническим результатом изобретения является обеспечение минимизации механических напряжений, вызываемых тепловыми расширениями и сужениями в корпусах модулей КА. 4 з.п. ф-лы, 3 ил.

Изобретение относится к радиотехнике и может быть использовано в радиосистемах передачи информации, предъявляющих требования высокой степени электромагнитной совместимости конструктивных элементов системы, например, в малогабаритных космических аппаратах (КА). Решаемой задачей является уменьшение габаритных размеров антенны в кольцевой щелевой антенне, состоящей из металлического цилиндра и резонатора, который вместе с цилиндром образует кольцевую излучающую щель, предложено резонатор выполнять в виде двух одинаковых металлических дисков, которые расположены в параллельных плоскостях соосно с цилиндром и гальванически с ним соединены. Под нижним диском можно располагать конструктивные элементы, над верхним диском также могут располагаться конструктивные элементы, размеры которых меньше самого верхнего диска. Согласно изобретению, резонатор выполнен в виде двух одинаковых металлических дисков диаметром Dд, которые расположены в параллельных плоскостях соосно с цилиндром на расстоянии h друг от друга и гальванически с ним соединены. Под нижним диском можно располагать конструктивные элементы. Над верхним диском располагаются элементы конструкции по размеру меньше, чем верхний диск. Диски антенны, работающей в диапазоне дециметровых длин волн, расположены на круглом волноводе питающего излучающую в сантиметровом диапазоне длин волн зеркальную антенну малого космического аппарата, диаметр основного зеркала которой Dз≤Dв. 3 з.п. ф-лы, 3 ил.

Изобретение относится к антенной технике, в частности к антеннам для космических аппаратов (КА), функционирующих на орбите высотой от 400 км до 1000 км. Диаграмма направленности (ДН) таких антенн должна иметь максимум в направлениях ±(60°÷70°) и коэффициент эллиптичности (КЭ) не менее 0.4 в секторе углов от -70° до 70° от оси антенны. Техническим результатом является создание антенны (для КА) с возможностью максимального излучения электромагнитных волн с эллиптической поляризацией под углами ±(60°÷70°) от оси антенны. Антенна космического аппарата содержит отражатель, вспомогательное зеркало и расположенный соосно с ними излучатель в виде открытого конца круглого волновода диаметром dB. Отражатель выполнен из нескольких соосных и примыкающих к друг другу металлических поверхностей усеченных конусов, при этом большее основание каждого предыдущего конуса является меньшим основанием каждого последующего конуса, а меньшее основание первого конуса образовано открытым концом круглого волновода, над которым на высоте h=dB÷2.5dB закреплено вспомогательное зеркало, выполненное в виде металлического диска диаметром dЗ≤1.2dB. При выполнении отражателя в виде трех соосных поверхностей усеченных конусов угол при основании первого конуса составляет 0°<β<15°, угол при основании второго конуса составляет 20°≤γ≤75°, а угол при основании третьего конуса составляет 1°≤α≤20°. При β=0°, когда отражатель состоит из 2-х конусов, углы при основании конусов находятся в следующих диапазонах 1°≤α≤5° и 40°≤γ≤50°. За счет предложенной многоконусной формы поверхности отражателя, а также размещения плоского вспомогательного зеркала над отражателем обеспечивается оптимальная ДН антенны с требуемым коэффициентом эллиптичности более 0.4 и с максимальным излучением в секторе углов ±(60°÷70°), что позволяет использовать эту антенну на космическом аппарате. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике, в частности к электрическим машинам, и может быть использовано в специальных электроприводах в качестве низкооборотного электродвигателя. Технический результат - максимизация электромагнитного момента и электромагнитной мощности низкооборотного синхронного реактивного электродвигателя. Синхронный реактивный электродвигатель состоит из зубчатого статора, в пазах которого расположена трехфазная обмотка (m=3), зубчатого ротора, вращающегося в подшипниках. При этом число пар полюсов ротора p, число зубцов статора Z связаны соотношениями: При этом Z=y·m·k, а также y, k - целые положительные числа. 10 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике, в частности к электрическим машинам, и может быть использовано в качестве низкооборотного электродвигателя или генератора. Техническим результатом настоящего изобретения является получение низкооборотной торцевой электрической машины, обладающей максимальной мощностью при заданных габаритах. Торцевая электрическая машина содержит статор с тороидальным магнитопроводом и катушечной обмоткой, дисковый ротор с постоянными магнитами с осевой намагниченностью и чередующейся полярностью (либо ферромагнитные сердечники ротора), подшипники и вал. Ротор жестко закреплен на валу и вращается благодаря подшипнику относительно статора. Число пар полюсов ротора р, число зубцов статора Ζ связаны соотношениями для трехфазной обмотки (m=3) для Z=y·m·k: р=у·k, (у+1)·k, где у=1; p=(у+1)·k, (у+2)·k, где у=3, 4; р=(у+2)·k, (у+3)·k, где у=5; р=(у+3)·k, (у+4)·k, где у=7; р=(у+3)·k, (у+5)·k, где y=8; p=(у+4)·k, (у+5)·k, где у=9; p=(у+5)·k, (у+6)·k, где у=11, при этом у, k - целые положительные числа. 2 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, в частности к низкооборотным электрическим двигателям и поворотным трансформаторам

Изобретение относится к области электротехники, в частности к высокооборотным электрическим машинам для турбогенераторных электрических установок небольшой мощности

Изобретение относится к области техники неразрушающего контроля и используется для дефектоскопии магистральных газопроводов в процессе их эксплуатации

Изобретение относится к области электротехники, в частности - к электрическим машинам, и может быть использовано в качестве низкооборотных высокомоментных двигателей и низкооборотных генераторов

Изобретение относится к области электротехники, в частности к электрическим машинам двойного вращения

Изобретение относится к конструкции космических аппаратов (КА), в частности искусственных спутников

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным электрическим двигателям и электроприводам, а также к высокочастотным электрическим генераторам

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным электрическим двигателям и электроприводам, а также к высокочастотным электрическим генераторам

Изобретение относится к области электротехники, в частности - к низкооборотным, высокомоментным электрическим двигателям, электроприводам и высокочастотным электрическим генераторам

Изобретение относится к энергетике и может быть использовано в ветроэлектрогенераторах

Изобретение относится к области электротехники, в частности - к высокомоментным электрическим двигателям и электроприводам, и к высокочастотным электрическим генераторам

Изобретение относится к системам управления и защиты ядерных реакторов и может быть использовано в системах контроля положения регулирующих органов

Изобретение относится к области электротехники, в частности - к электрическим машинам, и может быть использовано в качестве низкооборотных высокомоментных двигателей, низкооборотных генераторов и т.п

Изобретение относится к области электротехники, а именно к низкооборотным электрическим машинам и электроприводу

Изобретение относится к электротехнике, в частности к устройствам защиты ветроэнергоустановок при значительном увеличении скорости воздушного потока

Изобретение относится к области электротехники, в частности - к электрическим машинам, и может быть использовано в качестве низкооборотных высокомоментных двигателей мотор-колес для привода транспортных средств, двигателей привода лифтов, автомобильных стартер-генераторов и низкооборотных генераторов для ветроустановок и бесплотинных гидростанций и т.п

Изобретение относится к электротехнике и может быть использовано в тихоходных приводах, мотор-колесах транспортных средств, двигателях для привода лифтов, электрических генераторах, в частности ветро- и гидрогенераторах малой и средней мощности, синхронных компенсаторах и др

 


Наверх