Патенты автора Щербаков Эдуард Викторович (RU)

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему управления процессом испытаний. Стенд снабжен загрузочной крышкой с размещенными между ее фланцем и фланцем корпуса ВК уплотнительными прокладками, образующими вакуумную полость. Крышка оснащена механизмом подъема и опускания с подвешенным к ней столом, на котором устанавливается элемент КА, подключенный к системе функционирования. Предусмотрены система прогрева ВК и исполнительных органов СВ - в виде кабельных нагревателей с термопарами, теплоизолирующие чехлы для укрытия всех нагревательных узлов, пневматическая система для управления исполнительными органами СВ и ее охлаждения, система подогрева и подачи сжатого воздуха в криогенный экран. Техническим результатом является повышение достоверности испытаний и подтверждение работоспособности отдельных элементов КА, преимущественно в условиях сверхвысокого вакуума. 4 з.п. ф-лы, 1 ил.
Предложен способ заправки сжатым газом баллонов высокого давления пневмогидросистем (ПГС) космических аппаратов (КА) при испытаниях ПГС на герметичность. Задают постоянную скорость заправки изделия газом. Оценивают допустимые значения повышения температуры изделия и количества газа, которое необходимо подать в изделие с заданной постоянной скоростью заправки изделия газом, не превышая при этом допустимого значения температуры изделия. Оценивают длительность выдержки на установление теплового равновесия изделия с окружающей средой, которая должна быть сделана после подачи в изделие допустимого количества газа. В необходимое число этапов заправляют изделие газом до требуемого давления, подавая на каждом этапе в изделие допустимое количество газа. После каждого из этапов заправки изделия отсоединяют изделие от источника газа и делают выдержку на установление теплового равновесия изделия с окружающей средой, при этом измеряют давление газа в изделии в начале, конце, а также в течение каждой из выдержек в зависимости от времени. По завершении каждой из выдержек измеряют разность между значениями давления в изделии - в начале и конце выдержки, причем об установлении теплового равновесия изделия с окружающей средой в течение каждой из выдержек судят по установлению равновесного давления в изделии. 1 з.п. ф-лы.

Изобретение относится, преимущественно к наземным тепловакуумным испытаниям систем космических объектов (СКО). Способ включает установку СКО в вакуумную камеру с криоэкраном (КЭ), которую вакуумируют и одновременно захолаживают СКО, подавая жидкий азот в полость КЭ. До начала испытаний СКО размечают КЭ по высоте на заданные интервалы, вакуумируют камеру без СКО до заданного давления и по мере заполнения КЭ жидким азотом на каждом интервале фиксируют температуру (Т) КЭ, близкую к Т кипения жидкого азота. Одновременно с этим измеряют Т в самой верхней точке КЭ при достижении квазистационарного состояния. Эту Т сравнивают с зафиксированными Т КЭ на разных высотах - до момента полного заполнения КЭ. В итоге получают зависимость изменения Т верхней точки КЭ от высоты его заполнения жидким азотом. При помещении в камеру СКО находят горизонтальную проекцию её верхней точки на размеченный КЭ. После вакуумирования камеры с СКО заполняют КЭ жидким азотом только до указанной проекции, контролируя Т в самой верхней точке криоэкрана в соответствии с полученной зависимостью Т от высоты. Техническим результатом изобретения является снижение энерго- и трудозатрат, сокращение времени проведения захолаживания СКО. 1 ил.
Изобретение относится преимущественно к наземным тепловакуумным испытаниям космических объектов (КО). Способ включает размещение КО в вакуумной камере с криоэкранами, имитирующими «холодный» космос, и облучение КО световым потоком от имитатора солнечного излучения. КО вращают в световом потоке вокруг вертикальной оси и оценивают работоспособность КО при его функционировании по программе полета. Световой поток разделяют на горизонтальный и вертикальный световые потоки и облучают ими КО попеременно, соблюдая высокоточную имитацию неоднородности, непараллельности и удельной тепловой мощности падающего на КО потока - в зависимости от имитируемой ориентации КО относительно Солнца. Техническим результатом является повышение достоверности и снижение энерго- и трудоёмкости наземных испытаний, главным образом крупногабаритных КО с системами обеспечения теплового режима, чувствительными к ориентации КО в условиях земной гравитации.

Изобретение относится к области космической техники, в частности к тепловакуумным испытаниям космических аппаратов (КА) в условиях, приближенных к натурным. Стенд для проведения тепловакуумных испытаний КА в условиях, имитирующих натурные, включает вакуумную камеру с загрузочной крышкой, систему вакуумирования, криогенный экран, имитатор солнечного излучения, опорно-поворотное устройство для размещения КА, систему управления работой вакуумной камеры и имитатором солнечного излучения, систему управления работой КА. Вакуумная камера выполнена в виде двух цилиндров. Цилиндры перпендикулярны друг другу. Опорно-поворотное устройство размещено в нижней части горизонтального цилиндра. Имитатор солнечного излучения выполнен в виде двух источников солнечного излучения - горизонтального и вертикального. При размещении КА на опорно-поворотном устройстве облучение солнечным потоком происходит с высокими точностными характеристиками по неоднородности уровней плотностей падающего потока излучения, непараллельности и удельной тепловой мощности падающего теплового потока. Достигается повышение достоверности результатов испытаний. 1 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения негерметичности изделий, работающих под внешним давлением и внутренним избыточным давлением, например изделий космической техники. Сущность: вакуумируют средствами (1) вакуумирования внутреннюю полость изделия (4) через испытательную систему (5) до установившегося равновесного давления в изделии (4) и испытательной системе (5). Отсоединяют изделие (4) от испытательной системы (5), продолжая вакуумировать испытательную систему (5) средствами (1) вакуумирования. Измеряют первое установившееся равновесное парциальное давление компонента воздуха в испытательной системе (5), соответствующее поступлению в испытательную систему (5) собственного потока газоотделения и натекания. Причем в качестве компонента воздуха выбирают газ, содержащийся в воздухе и отличный от газов, использовавшихся для заполнения внутренней полости изделия (4) до избыточного испытательного давления при предыдущих испытаниях этого изделия (4) на герметичность. Подсоединяют к испытательной системе (5) калиброванную течь (7). Вакуумируют испытательную систему (5) с подсоединенной калиброванной течью (7). Подают через калиброванную течь (7) поток газа, в качестве которого используют поток воздуха. Измеряют установившееся равновесное парциальное давление компонента воздуха в испытательной системе (5), соответствующее поступлению в испытательную систему (5) собственного потока газоотделения и натекания и потока воздуха от калиброванной течи (7). Отсоединяют от испытательной системы (5) калиброванную течь (7). Соединяют изделие (4) с испытательной системой (5). Измеряют установившееся равновесное парциальное давление компонента воздуха, соответствующее поступлению в испытательную систему (5) потока от негерметичности изделия (4) и собственного потока газоотделения и натекания. Отсоединяют изделие (4) от испытательной системы (5). Измеряют второе установившееся равновесное парциальное давление компонента воздуха, соответствующее поступлению в испытательную систему (5) собственного потока газоотделения и натекания. По результатам измерений рассчитывают величину негерметичности изделия (4). Технический результат: повышение точности определения негерметичности изделий. 1 з.п. ф-лы, 2 ил.
Изобретение относится к способам исследования устройств на герметичность. Сущность: заполняют полость с высокими требованиями к степени суммарной герметичности до испытательного давления контрольным газом, содержащим пробный газ в высокой концентрации. Заполняют полость с низкими требованиями к степени суммарной герметичности до испытательного давления контрольным газом, не содержащим пробный газ, соблюдая ограничения на перепад давления между полостями. Определяют содержание пробного газа в пространстве, окружающем изделие, по которому измеряют степень суммарной герметичности полости с высокими требованиями к степени суммарной герметичности. Сбрасывают одновременно давление газов из обеих полостей, соблюдая ограничения на перепад давления между полостями. Вакуумируют одновременно обе полости. Заполняют обе полости до испытательного давления контрольным газом, содержащим пробный газ в концентрации, меньшей концентрации, использовавшейся для заполнения полости с высокими требованиями к степени суммарной герметичности, соблюдая ограничения на перепад давления между полостями. Определяют содержание пробного газа в пространстве, окружающем изделие, по которому измеряют степень суммарной герметичности обеих полостей. Степень суммарной герметичности полости с низкими требованиями к степени суммарной герметичности определяют как разность значений степени суммарной герметичности обеих полостей и степени суммарной герметичности полости с высокими требованиями к степени суммарной герметичности. Технический результат: снижение трудозатрат при измерении степени суммарной герметичности многополостных изделий.

Изобретение относится к области исследования устройств на герметичность. Сущность: изделие помещают в вакуумную камеру с подключенным к ней течеискателем. Вакуумируют вакуумную камеру. Подают в вакуумную камеру эталонный поток пробного газа. Измеряют приращение парциального давления пробного газа в вакуумной камере от поданного в вакуумную камеру эталонного потока пробного газа. Измеряют парциальное давление пробного газа в вакуумной камере. В необходимое число этапов заправляют изделие смесью пробного газа с воздухом до заданного испытательного давления. После этапов заправки изделия делают выдержку на установление теплового равновесия изделия с окружающей средой. По достижении в изделии заданного испытательного давления повторно измеряют парциальное давление пробного газа в вакуумной камере. При этом на каждом из этапов заправки изделия в вакуумную камеру подают эталонный поток пробного газа. Измеряют приращение парциального давления пробного газа в вакуумной камере от поданного в вакуумную камеру эталонного потока пробного газа. Измеряют парциальное давление пробного газа в вакуумной камере перед началом и после окончания каждого этапа заправки. Вычисляют приращение негерметичности изделия на каждом этапе заправки на основании измеренных приращений парциального давления пробного газа в вакуумной камере на каждом этапе заправки и от поданного в вакуумную камеру эталонного потока пробного газа. Суммируют вычисленные приращения негерметичности изделия на каждом из этапов его заправки. При этом при достижении в изделии заданного испытательного давления на последнем этапе заправки не делают выдержку на установление теплового равновесия изделия с окружающей средой. Судят о степени негерметичности испытываемого изделия по значению суммы вычисленных приращений негерметичности изделия на каждом из этапов его заправки. Технический результат: повышение точности определения суммарной герметичности изделия. 1 табл.

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T1 на объекте испытаний, измерение текущего значения температуры Т2 на объекте испытаний по истечении заданного промежутка времени (t), вычисление разницы значений температур T1 и Т2 и определение темпа и направления изменения значений температуры, задавание допустимых верхней (VG) и нижней (NG) границ диапазона изменения температуры на объекте испытаний, определение положения текущей температуры относительно нижнего допуска температуры и относительно верхнего допуска температуры, вычисление значения управляющего напряжения нагревателя. При этом заданный диапазон [VG…NG] разбивают на равные внутренние зоны и добавляют еще две внешние зоны, одна из которых находится выше VG, а другая - ниже NG. Получают всего (n) зон с последующей нумерацией каждой внешней и внутренней зоны, подготавливают массив коэффициентов [K1…K2n] из расчета, по крайней мере, по два коэффициента на каждую зону, один из которых соответствует событию нагрева Ki2, а другой - событию остывания Ki1 объекта испытаний за заданный промежуток времени (t) внутри каждой зоны его текущей температуры Т2. Подготавливают массив констант [B1…Bn] и выбирают для каждой зоны свою константу, значение которой соответствует положению зоны относительно центра заданного диапазона [VG…NG], определяют базовое значение величины управляющего напряжения (U0) нагревателя. При измерении текущих значений температур (T1) и (Т2) на объекте испытаний определяют номер текущей зоны (i), в которой находятся T1 и Т2 соответственно через заданный промежуток времени (t), после вычисления разности значений температур dT=T1-Т2 оценивают и, если разница больше определенного значения, производят охлаждение или нагрев. Измерение текущих значений температур (T1) и (Т2) на объекте испытаний, определение номера зоны, в которой находятся T1 и Т2 соответственно, вычисление разности значений температур dT=T1-Т2 и оценку , соблюдая вышеперечисленные условия, циклически повторяют до истечения времени поддержания заданного температурного режима. В результате сокращается время проведения испытаний, повышается качество испытаний, а также повышается надежность и долговечность изделий при эксплуатации. 1 ил.

Изобретение относится к космической технике, а именно к способам испытаний на герметичность гидравлических систем терморегулирования (СТР) космических аппаратов, снабженных гидропневматическими компенсаторами, при их наземной подготовке. Заявленный способ испытаний на герметичность гидравлической системы терморегулирования космического аппарата, снабженной гидропневматическим компенсатором с ограничительной решеткой жидкостной полости компенсатора состоит в том, что сначала вакуумируют жидкостную магистраль и жидкостную полость компенсатора гидравлической системы терморегулирования, а затем - газовую магистраль и газовую полость компенсатора, при этом герметичность газовой магистрали с газовой полостью компенсатора и жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования определяют по величине газовых потоков, поступающих из газовой магистрали с газовой полостью компенсатора и жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования при их вакуумировании, при этом перед вакуумированием жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования и газовой магистрали с газовой полостью компенсатора выравнивают давления в жидкостной магистрали с жидкостной полостью компенсатора и в газовой магистрали с газовой полостью компенсатора с атмосферным давлением, вакуумирование осуществляют в два этапа, причем вначале вакуумируют форвакуумным насосом жидкостную магистраль с жидкостной полостью компенсатора и газовую магистраль с газовой полостью компенсатора до установившихся значений равновесного давления, достигаемых с помощью форвакуумного насоса, после чего продолжают их вакуумирование высоковакуумным насосом до установившихся значений равновесного давления, достигаемых с помощью высоковакуумного насоса, а герметичность жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования и газовой магистрали с газовой полостью компенсатора определяют при их вакуумировании высоковакуумным насосом. Технический результат заключается в повышении качества испытаний за счет увеличения точности испытаний на герметичность изделий, за счет увеличения точности испытаний на герметичность изделий, повышения надежности и долговечности изделий при эксплуатации. 3 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения герметичности работающих под внешним давлением изделий, в частности изделий космической техники. Сущность: вакуумируют внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе. Отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему. Измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Подсоединяют к испытательной системе калиброванную течь. Измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи. Отсоединяют от испытательной системы калиброванную течь. Соединяют изделие с испытательной системой. Измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы. Отсоединяют изделие от испытательной системы. Измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи и величин упомянутых давлений. При этом после вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема. Причем калиброванную течь подсоединяют к участку испытательной системы известного объема. Измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема. Отсоединяют калиброванную течь от участка испытательной системы известного объема. После этого подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования. При этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования. Причем температура охлаждаемой ловушки средств вакуумирования должна быть равной температуре на рабочем месте. Технический результат: повышение точности определения герметичности изделий, повышение долговечности изделий при эксплуатации. 1 ил.

Изобретение относится к тепловакуумным испытаниям космического аппарата (КА), а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий. Согласно изобретению до помещения КА в термовакуумную камеру захолаживают криоэкраны этой камеры и имитируют внешние тепловые потоки, действующие в полете на КА. При этом подают поочередно напряжение на каждый нагревательный элемент имитатора данных потоков, постоянно измеряя потребляемую на элементе мощность. Фиксируют скачкообразное увеличение потребляемой мощности по отношению к мощности в стационарном режиме нагрева. Отбраковывают нагревательные элементы, для которых характерны такие скачки мощности, после чего отогревают криоэкраны, разгерметизируют вакуумную камеру и заменяют отбракованные нагревательные элементы. Повторяют операции отбраковки и замены нагревательных элементов до достижения всеми элементами стационарного режима нагрева. После этого устанавливают КА в термовакуумную камеру и проводят соответствующие испытания. Техническим результатом изобретения является повышение точности имитации тепловых потоков на КА с целью обеспечения надежности и долговечности КА при эксплуатации. 1 ил.

Изобретение относится к области испытательной техники и может быть использовано для испытаний на герметичность изделий, работающих под внутренним избыточным давлением в вакууме
Изобретение относится к области машиностроения

Изобретение относится к области средств измерения давления и может быть использовано для измерения малых перепадов давления в условиях температурных возмущений

Изобретение относится к области средств для измерения разности давлений и может быть применено в режиме дифференциального манометра для измерения малых перепадов давления

Изобретение относится к области средств измерения давления и может быть применено для измерения малых изменений давления в условиях температурных возмущений

Изобретение относится к области испытательной техники и предназначено для испытаний изделий космической техники на герметичность, кроме того, может найти применение в таких областях техники, как газовое и атомное машиностроение, авиационная промышленность

Изобретение относится к области испытательной техники и направлено на повышение точности контроля изделий, что обеспечивается за счет того, что помещают изделие в объем накопления, измеряют начальную концентрацию контрольного газа в объеме накопления с помощью индикатора контрольного газа, заполняют изделие контрольным газом до избыточного испытательного давления, выдерживают изделие под избыточным испытательным давлением контрольного газа в течение заданного времени, измеряют конечную концентрацию контрольного газа в объеме накопления с помощью индикатора контрольного газа и о степени негерметичности изделия судят по разности конечной и начальной концентраций контрольного газа в объеме накопления, при этом после помещения изделия в объем накопления, перед измерением начальной концентрации контрольного газа в объеме накопления вводят порцию контрольного газа в объем накопления, измеряют приращение концентрации контрольного газа в объеме накопления от введенной порции контрольного газа, делают выдержку для определения воздухообмена объема накопления с окружающей объем накопления атмосферой, по окончании выдержки повторно измеряют приращение концентрации контрольного газа в объеме накопления от введенной порции контрольного газа, определяют воздухообмен объема накопления с окружающей объем накопления атмосферой по значениям конечного и начального приращений концентрации контрольного газа в объеме накопления и длительности выдержки для определения воздухообмена объема накопления с окружающей объем накопления атмосферой по математической формуле, приведенной в формуле изобретения, а о степени негерметичности изделия судят по разности конечной и начальной концентраций контрольного газа в объеме накопления с учетом определенного значения воздухообмена объема накопления с окружающей объем накопления атмосферой, рассчитывая степень негерметичности изделия по другой математической формуле, приведенной в формуле изобретения

Изобретение относится к области испытательной техники и может найти применение в тех ее областях, где предъявляются повышенные требования к герметичности, долговечности и надежности изделий, например трубопроводов, замкнутых отсеков космических кораблей

Изобретение относится к области испытательной техники и может найти применение в областях техники, где предъявляются повышенные требования к герметичности, долговечности и надежности изделий, например, таких, как трубопроводы, замкнутые отсеки космических кораблей

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов

Изобретение относится к средствам испытаний изделий на локальную герметичность с использованием пробных газов и течеискателей и может найти применение в таких областях техники, как газовая, атомная, авиационная, машиностроение

Изобретение относится к средствам испытаний изделий на герметичность с использованием инертных газов и направлено на снижение трудозатрат на проведение испытаний за счет отказа от прерывания испытаний для восстановления характеристик вакуумного адсорбционного насоса
Изобретение относится к области оценки состояния микробиологической обстановки окружающей среды, в частности жилого гермоотсека космического объекта
Изобретение относится к способам имитации космических условий

Изобретение относится к стендам для имитации космических условий

 


Наверх