Патенты автора Алексеев Сергей Владимирович (RU)

Изобретение относится к тепловой защите объектов космической и/или криогенной техники, а также может быть использовано в других отраслях народного хозяйства. Материал состоит из чередующихся слоев экранов металлизированной теплоотражающей перфорированной пленки и сепарационной прокладки. В качестве прокладки использована разреженная беспылевая полимерная ткань. Указанные слои сварены по краям перфорационных отверстий диаметром от 1 до 8 мм, при шаге перфорации от 10 до 50 мм. Способ изготовления данного материала состоит в том, что указанные чередующиеся слои экранов и прокладочной ткани сваривают одновременно по краям всех перфорационных отверстий. Техническим результатом является уменьшение времени дегазации материала за счет фиксированного прочного бессдвигового соединения металлизированных экранов с прокладкой, при одновременной высокой механической прочности и низкой теплопроводности материала. 2 н.п. ф-лы, 5 ил.

Изобретение относится к медицине, а именно к спортивной медицине, и может быть использовано при определении уровня физической работоспособности. Для этого осуществляют выполнение челночных упражнений - передвижения по отрезкам в направлении туда и обратно. Увеличение скорости движений в челночном упражнении осуществляют путем увеличения дистанции для преодоления при неизменном времени между записанными на аудионоситель сигналами. В качестве показателей физической работоспособности используют любой из параметров: предельное время работы, или наибольшая общая дистанция, или наивысшая скорость движения. Способ обеспечивает возможность в дальнейшем программировать физическую нагрузку, расставляя маркеры в нужном для тренера варианте. 1 ил.

Изобретение относится к металлургии высокочистых металлов и может быть использовано при выращивании монокристаллических дисков из тугоплавких металлов и сплавов на их основе методом бестигельной зонной плавки (БЗП) с электронно-лучевым нагревом. Способ включает формирование расплавленной зоны 12 между поликристаллической заготовкой 5 и боковой поверхностью горизонтально расположенного цилиндрического затравочного кристалла 6, выдержку расплавленной зоны в течение времени, необходимого для стабилизации тепловых условий роста монокристаллического диска, наплавление расплава на боковую поверхность затравочного кристалла в процессе перемещения затравочного кристалла в вертикальном направлении роста монокристалла и вращения затравочного кристалла в направлении наступления фронта кристаллизации, при этом в процессе роста автоматически измеряют текущий диаметр монокристаллического диска, по результатам измерений которого задают скорости перемещения и вращения заготовки 5 и затравочного кристалла 6, перемещение затравочного кристалла в процессе роста осуществляют непрерывно в течение всего процесса роста монокристаллического диска. Способ осуществляют в устройстве, включающем ростовую камеру 1 с верхним 3 и нижним 2 штоками для перемещения, соответственно, поликристаллической заготовки 5 и затравочного кристалла 6, дополнительный привод 4 для наплавления жидкого металла из расплавленной зоны на боковую поверхность затравочного кристалла 6, установленного на валу 7 дополнительного привода 4. Устройство дополнительно снабжено связанной с нижним 2 и верхним 3 штоками, а также с дополнительным приводом 4 системой автоматического управления вращением и перемещением затравочного кристалла и поликристаллической заготовки, при этом нижний шток 2 механически связан с дополнительным приводом 4, преобразующим ось вращения нижнего штока 2 из вертикального положения в горизонтальное. Технический результат - обеспечение стабильности роста монокристаллического диска большого диаметра (150 мм и более) и увеличение выхода годной продукции путем стабилизации состояния расплавленной зоны в процессе роста. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к верхнему строению пути, а именно к шпалам из бетона, естественного или искусственного камня с арматурой или усилением. Шпала содержит брус из бетона и размещённую внутри него арматуру. Рабочая арматура выполнена из четырех стеклопластиковых стержней диаметром 5÷10 мм с периодическим профилем, расположенных в объеме шпалы по всей ее длине. Расстояние от верхней поверхности бетона до крайнего верхнего ряда рабочей арматуры составляет не менее 25 мм, а от нижней поверхности бетона до крайнего нижнего ряда рабочей арматуры - не менее 30 мм. В объеме бетон армирован кусками полимерной фибры с рельефной поверхностью размером до 100 мм, которые добавлены в состав сухой шихты бетона. Достигается исключение электропроводности шпалы, снижение массы шпалы, повышается прочность, увеличивается долговечность. 1 ил.

Изобретение относится к верхнему строению пути, а именно к шпалам из бетона, естественного или искусственного камня с арматурой или усилением. Арматура выполнена из кусков полимерной ленты с волнообразной поверхностью, плотностью 0,85÷0,99 т/м3, с размером кусков 30÷80 мм, которые вносятся в бетон перед заполнением бетоном формы, располагаются в бетоне хаотично, при этом расход полимерной ленты на один кубический метр бетона составляет 0,005÷0,01 м3. В каждом кубическом метре содержится 0,4÷0,9 миллиона кусков полимерной ленты. Арматура выполнена из композитного полимерного материала в форме стержней с рельефной поверхностью длиной 2,7÷3,0 м и стандартным количеством их в объеме шпалы. В качестве композитного полимерного материала использованы стеклопластик в форме стержней диаметром 2÷10 мм и углеволокно в форме стержней диаметром 1÷6 мм. Достигается исключение электропроводности, снижение массы и стоимости шпалы. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула с исследуемыми образцами, помещенными в негерметичную тонкостенную оболочку из тугоплавкого материала. Капсула соединена с газовыми магистралями, обеспечивающими возможность проточной вентиляции рабочей полости капсулы. На выходе каждой магистрали установлены заглушки для временной герметизации капсулы, выполненные в виде втулок с осевыми отверстиями, заполненными легкоплавким материалом. В одной из магистралей расположены термометрические датчики, при этом чувствительный элемент каждого датчика введен в рабочую полость капсулы. Технический результат - возможность измерять температуру исследуемых образцов в ходе эксперимента, проводить анализ ГПД, выделяющихся при ядерном распаде в процессе проведения эксперимента, простые с конструктивной и технологической точки зрения механизмы временной герметизации рабочей полости капсулы. 3 з.п. ф-лы, 1 ил.

Группа изобретений относится к медицинской технике. При осуществлении способа одновременно или последовательно воздействуют на патологию ионизирующим и тепловым излучениями через выходное окно источника излучения, которое размещают вблизи или на поверхности патологии. Поток излучения ограничивают в диаметре размером не более максимального размера патологии, энергию излучения выбирают в зависимости от толщины патологии по соотношению Е~Кf(d), где d - толщина патологии, К - коэффициент, учитывающий глубину проникновения излучения в зоне облучения тела пациента в зависимости от энергии излучения. Область патологии облучают в течение заранее определенного времени с последующим охлаждением источника, а интенсивность охлаждения изменяют в зависимости от температуры выходного окна источника излучения. Варианты конструкции устройства представляют собой заключенный в чехол зонд в виде, по меньшей мере, двух коаксиально установленных с зазором друг относительно друга тонкостенных трубок, имеющий дистальный и проксимальный концы. Внутри зонда расположены источник излучения, включающий катод и анод, состоящий из основы и мишени, система охлаждения анода и блок электропитания. При этом анод размещен на дистальном конце зонда. В соответствии с первым вариантом устройства в зазоре между трубками размещена система охлаждения с теплоносителем, а внутри полости, образованной внутренней трубкой, размещен катод, заключенный в слой электроизоляции. В другом варианте устройства в зазоре между трубками расположен заключенный в слой электроизоляции катод, а внутри полости, образованной внутренней трубкой, размещена система охлаждения. Заявленная группа изобретений позволяет существенно повысить эффективность лечения злокачественных и незлокачественных опухолей и других заболеваний, которые чувствительны к облучению ионизирующим и тепловым излучениями за счет совместного и одновременного облучения различными потоками, а также повышением мощности источника рентгеновского излучения. 3 н. и 22 з.п. ф-лы, 4 ил.

Изобретение относится к металлургии, а именно - к выращиванию монокристаллов методом бестигельной зонной плавки с электронно-лучевым нагревом. Способ включает затравление кристалла из расплавленной зоны, выдержку в течение заданного времени и вытягивание монокристалла на затравку из расплавленной зоны в градиенте температуры, в процессе которого осуществляют контроль величины диаметра центральной симметричной части расплавленной зоны, при этом величину диаметра фронта кристаллизации выбирают с заданной поправкой, учитывающей допустимое отклонение диаметра выращиваемого монокристалла от заданного, и поддерживают эту величину постоянной в течение всего процесса выращивания путем регулирования величины диаметра центральной симметричной части расплавленной зоны, в частности, за счет изменения скорости перемещения верхнего штока ростовой камеры. Способ осуществляют в устройстве, включающем ростовую камеру 3 с нижним и верхним штоками, видеокамеру 1, установленную в смотровом окне 2 ростовой камеры 3, выход видеокамеры через блок обработки сигнала 4 подключен к формирователю управляющего сигнала 5, выход которого соединен с входом блока автоматического управления скоростью перемещения штоков 6, подключенного к приводу 7 перемещения штоков, устройство снабжено стробоскопом 8, установленным перед смотровым окном 2 ростовой камеры 3, и синхронизатором 9, соединенным с входами синхронизации стробоскопа 8 и видеокамеры 1, а блок обработки сигнала 4 содержит процессор 10 с подключенными к нему модулями выделения кадра изображения 11, выделения контура изображения 12, вычисления диаметра центральной симметричной части расплавленной зоны 13 и вычисления диаметра фронта кристаллизации 14, при этом процессор 10 соединен с синхронизатором 9, а выход видеокамеры 1 подключен к входу модуля выделения кадра изображения 11, который через модуль выделения контура изображения 12 подключен к входам модуля вычисления диаметра фронта кристаллизации 14 и модуля вычисления диаметра центральной симметричной части расплавленной зоны 13, выходы которых соединены, соответственно, с первым 15 и вторым 16 усредняющими фильтрами, формирователь управляющего сигнала 5 выполнен в виде двухкаскадного пропорционально-интегрально-дифференциального регулятора, при этом входы первого каскада 17 регулятора, формирующего сигнал, учитывающий фактический фронт кристаллизации монокристалла, соединены, соответственно, с выходом первого усредняющего фильтра 15 и модулем задания величины поправки 18, входы второго каскада 19 регулятора, формирующего сигнал, учитывающий диаметр центральной симметричной части расплавленной зоны, соединены, соответственно, с выходом первого каскада 17 регулятора и выходом второго усредняющего фильтра 16, а выход второго каскада 19 регулятора подключен к входу блока автоматического управления скоростью перемещения штоков 6. Технический результат изобретения заключается в повышении точности измерения и регулирования диаметра монокристалла в процессе выращивания и повышении стабильности работы устройства, что позволяет выращивать кристаллы с минимально допустимым отклонением диаметра по всей длине слитка. 2 н. и 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к ядерной технике, а более конкретно - к облучательным устройствам и тепловыделяющим сборкам для реакторных испытаний топливных образцов, а также модельных твэлов в исследовательском реакторе, и может быть использовано при разработке и обосновании конструкций твэла для энергетических реакторов. Устройство содержит газовый тракт и газозаполненную капсулу, включающую оболочку, герметично соединенную с торцевыми элементами. В капсуле с радиальным зазором размещен топливный образец в виде столба таблеток в негерметичной тонкостенной оболочке из высокопластичного жаростойкого материала, а также термометрические датчики и компенсационный объем. Один из датчиков размещен в торцевой топливной таблетке, а другой - с противоположной стороны топливного образца за пределами активной зоны. Зазор между тонкостенной оболочкой и топливным образцом составляет не более разности значений их радиальных термических расширений, а зазор между оболочками капсулы и топливного образца выбран в диапазоне возможных значений радиального зазора между оболочкой и топливным сердечником штатного твэла. Данная конструкция ампульного облучательного устройства позволяет исследовать скорость свободного распухания и кинетику выхода газообразных продуктов деления из топлива с возможностью определения его температуры и температурной зависимости исследуемых процессов при характерных для быстрого реактора высоких плотностях энерговыделения. 5 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной технике, а более конкретно к невентилируемым газозаполненным тепловыделяющим элементам (твэлам) на основе диоксида урана, и может быть использовано в составе высокотемпературного газоохлаждаемого быстрого реактора ядерной энергетической установки (ЯЭУ) космического назначения
Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП)

Изобретение относится к металлургии полупроводниковых материалов и может быть использовано, преимущественно, при получении кристаллов веществ с температурой плавления, превышающей температуру размягчения кварца, например, при выращивании монокристаллов кремния методом Чохральского

Изобретение относится к аналитическому приборостроению и может быть использовано в энергетике, ядерной технике, химической технологии, металлургии, газовом анализе для измерения содержания водорода в расплавах щелочных металлов и их парах, инертных газах и водяном паре

Изобретение относится к ветроэнергетике и может быть использовано для выработки электроэнергии, используя энергию ветра при нормальных погодных условиях и при ураганах
Изобретение относится к технологии переработки твердого облученного ядерного топлива (ОЯТ) в виде разнородных урансодержащих топливных композиций (металлических, карбидных, оксидных и др.) с целью его дальнейшего возврата в ядерно-топливный цикл
Изобретение относится к физико-технологическим процессам обработки жидких сред и может быть использовано для очистки и обеззараживания воды, водных растворов и сточных вод

 


Наверх