Патенты автора Валиуллин Рим Абдуллович (RU)

Изобретение относится к способам оценки характера насыщеннности пласта при разведке, контроле за разработкой нефтяных месторождений и может быть использовано при геофизических и промыслово-геофизических исследованиях действующих нефтяных скважин. Техническим результатом является повышение достоверности и оперативности выделения нефтеносных и обводненных пластов при исследовании разведочных и действующих скважин. Способ, согласно которому измеряют температуру в рассматриваемой области продуктивного пласта, воздействуют на пласт, измеряют температуру по окончании воздействия и регистрируют ее изменение, после первого измерения температуры создают в пласте акустическое давление с помощью управляемого ультразвукового излучателя, изменяют частоту акустического поля для получения наиболее эффективных условий разгазирования нефти, когда его длина волны удовлетворяет условию: λ<2πKb, где b - характерный размер газового пузырька, К - коэффициент эффективности поглощения звуковых волн, определенный ниже, измеряют температуру в рассматриваемой области продуктивного пласта после такого воздействия и по изменению температуры судят о нефтенасыщенности пласта. 3 ил.

Изобретение относится к области исследования скважин с работающими интервалами притока или поглощения и может быть использовано при геофизическом сопровождении разработки нефтяных месторождений. Способ определения поинтервальной скорости и расхода жидкости в скважине включает серию измерений скважинным прибором при его движении вдоль ствола скважины с различными постоянными скоростями, построение на основании этих измерений графика зависимости показаний скважинного прибора от скорости его движения. Создают гидродинамическое сопротивление потоку посредством пакера скважинного прибора, обеспечивающего частичное перекрытие внутреннего сечения ствола скважины, замеряют величину перепада давления на пакере с помощью датчиков давления скважинного прибора. Причем измерение перепада давления на пакере осуществляют как при движении скважинного прибора по направлению потока, так и против потока, с учетом функциональной зависимости перепада давления на пакере от скорости движения прибора ΔP=fi(Vпр) определяют локальную скорость потока жидкости между интервалами притока/поглощения при условии, когда ΔP=fi(Vпр)=0, где ΔΡ - перепад давления на пакере прибора, Vпр - скорость движения прибора, i=1…n - участок исследуемого интервала притока/поглощения жидкости. Технический результат заключается в упрощении технологического процесса исследования скважин, повышении диапазона расходов и расширении номенклатуры исследуемых промысловых скважин, имеющих несколько интервалов притока/поглощения жидкости. 3 ил.

Изобретение относится к области исследования вертикальных, горизонтальных и наклонных скважин, в частности к способам определения скорости потока и суммарного расхода жидкости в скважинах, и может быть использовано при геофизическом сопровождении разработки нефтяных месторождений, контроле технического состояния скважины, а также для контроля суммарного расхода жидкости в магистральных трубопроводах. Согласно способу создают искусственно гидродинамическое сопротивление потоку посредством пакера в составе скважинного прибора, обеспечивающего частичное перекрытие внутреннего сечения ствола скважины. Замеряют величину перепада давления на пакере с помощью датчиков давления скважинного прибора, причем измерение перепада давления на пакере при движении скважинного прибора с положительным ускорением осуществляют при изменении скорости его движения от нуля до максимально возможной для данного геофизического подъемника. При достижении максимальной скорости осуществляют движение скважинного прибора с отрицательным ускорением до полной его остановки, замеряя одновременно при этом перепад давления на пакере. Определяют значения скорости прибора, соответствующие нулевому значению перепада давления на пакере с последующим расчетом скорости потока по зависимости Vпот=(ΣVпр-i)/n, где Vпот - скорость потока жидкости, Vпр-i - значение скоростей прибора, при которых перепад давления на пакере равен нулю, n - количество точек с нулевым значением перепада давления, зафиксированных в процессе измерения, i=1…n. Техническим результатом является снижение эксплуатационных затрат и повышение точности определения скорости потока и суммарного расхода жидкости. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для распознавания режимов течения газожидкостного потока в горизонтальных трубопроводах в нефтяной, химической, пищевой и других отраслях промышленности. Предложен способ для распознавания режимов течения газожидкостного потока в горизонтальном трубопроводе, при котором с помощью установленного в разрыв трубопровода зондирующего модуля с тензорезистивным дифференциальным датчиком давления и распределенным резистивным датчиком осуществляют одновременно измерение давления, пульсации давления и локальной электропроводности газожидкостной смеси по всему вертикальному сечению трубопровода, по изменению уровня пульсации перепада давления определяют размер пузырьков, по изменению электропроводности определяют структуру потока, а по показаниям обоих типов датчиков с учетом результатов предварительной настройки зондирующего блока в визуально контролируемом потоке и хранящихся в памяти компьютера данных определяют режим течения газожидкостного потока. Также предложено устройство для осуществления предложенного способа. Технический результат - повышение точности и разрешающей способности при проведении измерений, расширение функциональных возможностей устройства. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами. Техническим результатом является повышение достоверности определения интервалов заколонного перетока жидкости в скважинах перекрытых НКТ. Способ включает регистрацию термограмм до и после кратковременного локального нагрева обсадной колонны в предполагаемом интервале движения флюида путем регистрации температуры по стволу скважины с последующим их анализом. При этом опускают насосно-копрессорную трубу из стеклопластика с размещенными снаружи датчиками температуры в выбранный интервал исследования, далее осуществляют индукционный нагрев обсадной колонны через стеклопластиковую насосно-компрессорную трубу в течение времени, определяемого по математическому выражению, и проводят регистрацию температуры во времени в процессе локального кратковременного нагрева колонны и по стволу скважины в исследуемом интервале при работе скважины, а об интервале заколонного перетока судят по повышенному темпу изменения температуры. 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения фазовых расходов в вертикальных и наклонных скважинах нефтегазовых месторождений. Технический результат заключается в повышении эффективности определения фазового расхода в нефтедобывающих скважинах. Способ включает определение участка ствола скважины, где нужно осуществить замер расхода компонент. Спуск корпуса с мерными элементами на выбранный участок. Осуществление замеров расхода в скважине посредством параметров мерных элементов. Формирование и съем электрического сигнала. Замеряют плотности нефти и воды, например, по отобранным на устье скважины пробам; определяют состав нефтяного газа, молярных масс Mг,i и массовых долей компонент kг,i в нем. Определяют молярную массу Мг газа и удельную газовую постоянную. Определяют температуру скважинной продукции на участке, где расположен корпус с мерными элементами, замерные датчики располагаются на жестком, или частично гибком, или гибком корпусе. Определяют плотность газа ρг на выбранном участке. Определяют площадь проточной части скважины в месте расположения датчика полного давления S. Замер полного давления потока скважинной продукции на любом участке ствола скважины, прямолинейном или искривленном, осуществляется по ее оси по направлению навстречу потоку. Замер статического давления потока осуществляется в двух и более точках, расположенных на корпусе через равные или неравные расстояния, причем расстояние между точками замера статического давления может меняться. Замеряют расстояние между точками замера статического давления h и угол наклона ствола скважины δ между точками замера статического давления. Замеренные данные поступают в узел формирования и съема электрических сигналов. Определяют плотность водонефтегазового потока ρсм как отношение разности статических давлений между точками к произведению ускорения свободного падения g на расстояние между этими точками. Определяют объемную долю газа в водонефтегазовой смеси, например по изменению плотности водонефтегазовой смеси. Динамический напор потока Δp определяют как разность полного давления и статического давления, замеренных в одной из точек. Определяют объемный расход водонефтегазовой смеси по формуле: определяют обводненность водонефтяной эмульсии по формуле: где: ρн и ρв - плотности нефти и воды; αг - объемная доля растворенного газа в сырой нефти. 1 з.п. ф-лы, 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов заколонного перетока жидкости из пластов, перекрытых насосно-компрессорными трубами (НКТ). В скважину, в зону предполагаемого заколонного перетока жидкости, спускаются термоизолированные НКТ, снаружи которых крепятся датчики температуры. Осуществляют одновременную регистрацию температуры по стволу скважины в исследуемом интервале. После извлечения термоизолированных НКТ из скважины проводится анализ показаний датчиков в исследуемом интервале через время не менее , где Rk - радиус колонны, а - температуропроводность среды между насосно-компрессорными трубами и колонной после начала работы скважины. Об интервале заколонного перетока судят по аномалиям температуры. Использование способа повышает достоверность определения интервалов заколонного перетока жидкости в скважинах, перекрытых термоизолированными НКТ. 3 з.п. ф-лы, 3 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения интервалов поступления свободного газа из пласта в ствол горизонтальной скважины при исследованиях нефтяных скважин с использованием многодатчиковой технологии. Техническим результатом является повышение достоверности исследования действующих горизонтальных скважин с целью выявления интервалов поступления свободного газа в действующую скважину. Способ включает оборудование горизонтального ствола скважины регистрирующими приборами, одновременную регистрацию температуры и давления в нескольких точках горизонтального ствола скважины при изменении давления в скважине, последующее сопоставление отношения изменения температуры к изменению давления в каждой точке регистрации. При этом температура и давление регистрируются в простаивающей скважине при пуске скважины в работу при медленном снижении давления в течение времени выше давления насыщения и при дальнейшем снижении давления в течение времени ниже давления насыщения нефти газом, изменение давления в скважине производится путем его медленного снижения в течение времени относительно уровня давления насыщения нефти газом, поступление свободного газа из пласта в интервале горизонтального ствола скважины определяют исходя из отношения изменения температуры к изменению давления в каждой точке регистрации, при этом из условия неизменности знака отношения при давлении выше и ниже давления насыщения нефти газом. О поступлении свободного газа из пласта по сравнению с разгазированным судят по знаку отношения относительно давления насыщения нефти газом, которое является условно нулевым уровнем. Применение предлагаемого способа в данном случае позволяет однозначно указать интервал поступления свободного газа. 2 ил.

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе. Техническим результатом, достигаемым при реализации изобретения, является расширение функциональных возможностей датчика и повышение эффективности измерений. Скважинный датчик, предназначенный для измерения параметров потока флюида, содержит два идентичных полых открытых с одного конца металлических корпуса, оси симметрии которых находится на одной линии. Открытые концы корпусов обращены друг к другу и жестко закреплены в электрическом изоляторе. В каждом корпусе расположен датчик термоанемометра. Электрические выводы датчиков проходят внутри полостей корпусов и через электрический изолятор выведены наружу. 5 з.п. ф-лы, 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения направления фильтрации жидкости в пласте при промысловых геофизических исследованиях нефтяных скважин

Изобретение относится к измерительной технике и может быть использовано для измерения скорости потока однородных или гомогенных жидкостей или газов

Изобретение относится к измерительной технике и предназначено для калибровки термоанемометрических датчиков скорости потока жидкости и может быть использовано для повышения информативности геофизических исследований скважин, проводимых с применением термоанемометрических датчиков

Изобретение относится к области геофизики и предназначено для проведения комплекса геофизических исследований нефтяных и газовых скважин, эксплуатируемых горизонтальным стволом

Изобретение относится к измерительной технике и предназначено для измерения положения границы раздела фаз водонефтяных потоков и может быть использовано в промысловой геофизике, в системах сбора и обработки информации при добыче нефти в горизонтальных и вертикальных скважинах, для учета фазового расхода расслоенного течения в трубопроводах, измерения уровня жидкостей в емкостях и резервуарах

Изобретение относится к области исследования скважин и может быть использовано для геотермических исследований

 


Наверх