Патенты автора Хараев Арсен Мухамедович (RU)

Изобретение относится к ароматическим полиэфирам, в частности, к галогенсодержащим ароматическим полиэфиркетонам, которые могут быть использованы в качестве конструкционных и пленочных материалов в электронике, электротехнике, авиационной, космической, автомобильной и других отраслях промышленности. Данные галогенсодержащие ароматические сополиэфиркетоны имеют формулу: при мольном соотношении бисфенолов от 99:1 до 1:99, где n= 1-15, m = 1-15, z=7-25. Технический результат – расширение ассортимента огнестойких ароматических полиэфиркетонов, обладающих повышенной огне-, тепло- и термостойкостью. 10 пр.

Настоящее изобретение относится к ненасыщенным галогенсодержащим ароматическим полиэфирсульфонамсульфидам, которые могут быть использованы в качестве конструкционных и пленочных материалов в электронике, электротехнике, авиационной, космической, автомобильной и других отраслях промышленности. Галогенсодержащие ароматические сополиэфирсульфонсульфиды имеют формулу . Данные сополиэфирсульфонсульфиды получены взаимодействием 4,4'-дихлордифенилсульфона со смесью 1,1-дихлор-2,2-ди-(4-оксифенил)этилена (С-2) и Na2S*9H2O (сульфид натрия наногидрат) в среде N,N-диметилацетамида при температуре 160-165°С в присутствии щелочного агента. Мольное соотношение С-2 и Na2S*9H2O равно от 99:1 до 1:99. Значения n, m и z таковы, что полученная приведенная вязкость галагенсодержащих ароматических сополиэфирсульфонсульфидов составляет 0,5-0,7 дг/г. Технический результат – создание новых полиэфиров с повышенными термическими и механическими характеристиками, а также огнестойкостью, стойким к воздействиям различных внешних условий. 1 табл., 7 пр.

Настоящее изобретение относится к ионогенным водорастворимым полиэлектролитам диаллильной природы, в частности к N,N-диаллилглутаминовой кислоте формулы , где n=100-112. Технический результат – получение полиэлектролитов с высокой молекулярной массой и расширение ассортимента полимеров диаллильной природы. Данный полиэлектролит обладает высокими комплексообразующими свойствами, в молекуле которого содержатся как отрицательно заряженные, так и положительно заряженные функциональные группы, с регулируемым кислотно-основным и гидрофильно-гидрофобным балансом. Данный полиэлектролит может быть использован в качестве флокулянтов, коагулянтов, структураторов почв, пролонгаторов лекарственных средств. 1 ил., 3 табл., 4 пр.
Настоящее изобретение относится к способу получения высокомолекулярного полиэфирэфиркетона нуклеофильной поликонденсацией эквимольных количеств гидрохинона и дигалогенбензофенонов в среде дифенилсульфона в присутствии щелочного агента при поэтапном повышении температуры до 320±5°С. Данный способ включает стадии выделения и измельчения, двухстадийной промывки растворителем и дистиллированной водой, сушки под вакуумом. В качестве щелочного агента применяют карбонат калия. Повышение температуры осуществляют в два этапа в зависимости от заданного значения показателя текучести расплава. На первом этапе нагревают до 300±5°С в течение 30 минут и выдерживают при этой температуре в течение 60-120 минут. На втором этапе нагревают до 320±5°С и выдерживают в течение 60-180 минут. Полученную реакционную массу под давлением выгружают из реактора и измельчают шаровой мельницей со среднечисленным диаметром от 20 до 50 мкм. Далее промывают и сушат. Технический результат - упрощенная технология получения мелкодисперсного высокомолекулярного полиэфирэфиркетона с использованием дигалогенида (4,4'-дихлорбензофенона), карбоната калия и сокращение общей продолжительности процесса. 5 з.п. ф-лы, 3 пр.

Изобретение относится к ароматическим полиэфирам, в частности к ненасыщенным галогенсодержащим ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов в электронике, электротехнике, авиационной, космической, автомобильной и других отраслях промышленности. Описан ароматический сополиэфирсульфон формулы: где n=1-10, m=1-10, z=5-20. Технический результат изобретения состоит в расширении ассортимента огнестойких ароматических полиэфиров, обладающих повышенной тепло- и термостойкостью, а также высокими показателями механических характеристик. 1 табл., 5 пр.

Настоящее изобретение относится к ароматическим полиэфирам формулы: где n=1-20; m=1-30; z=1-30. Технический результат – расширение ассортимента ароматических полиэфиров, обладающих высокой тепло- и термостойкостью, повышенными значениями кислородного индекса, высокими механическими свойствами. 1 табл., 4 пр.

Изобретение относится к ароматическим полиэфирам, в частности к ароматическим полиэфирсульфонарилатам, а также к способу их получения. Полиэфиры могут быть использованы в качестве полимерной матрицы различных композиционных материалов, применяемых в авиационной, космической, автомобильной и других отраслях промышленности, а также в электронике и электротехнике. Полиэфиры имеют нижеуказанную формулу, в которой n=1-20; m=1-30; z=1-30. Способ получения полиэфиров заключается в том, что на первой стадии синтеза проводят акцепторно-каталитическую поликонденсацию олигосульфона на основе фенолфталеина со степенью конденсации 1-20 с эквимольной смесью дихлорангидрида терефталевой кислоты и 1,1-дихлор-2,2-ди(4-карбоксифенил)этилена. Поликонденсацию проводят в высококипящем растворителе дитолилметане или дифенилоксиде при температуре 25-60°С в течение 1 ч. На второй стадии синтеза проводят высокотемпературную поликонденсацию в течение 1 ч при температуре 200-220°С в присутствии солянокислого триэтиламина. Затем раствор полимера выливают в горячий тетрахлорэтан. После этого полиэфир высаживают в изопропанол. Высаженный полиэфир не содержит следов солянокислого триэтиламина. Возогнанный солянокислый триэтиламин собирают с внутренней поверхности крышки реактора, промывают дихлорэтаном и используют в качестве самостоятельного продукта. Изобретение позволяет получить полиэфиры с повышенными показателями огне-, тепло-, термостойкости, а также механических характеристик. 2 н.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к ароматическим полиэфирам, в частности к ароматическим полиэфирсульфонарилатам, а также к способу их получения. Полиэфиры могут быть использованы в качестве полимерной матрицы препрегов, применяемых в авиационной, космической, автомобильной и других отраслях промышленности, а также в электронике и электротехнике. Полиэфиры имеют нижеуказанную формулу, в которой n=1-20; m=1-30; z=1-30. Способ получения полиэфиров заключается в том, что проводят взаимодействие олигосульфонов на основе 4,4'-дигидрокси-2,2-дифенилпропана со степенями конденсации 1-20 с эквимольной смесью дихлорангидрида терефталевой кислоты и 1,1-дихлор-2,2-ди(4-карбоксифенил)этилена в течение 1 часа в среде дихлорэтана при комнатной температуре. Затем раствор полимера разбавляют дихлорэтаном до концентрации раствора 5-10% и выдерживают в течение 1 часа без перемешивания. После расслоения из реактора выливают нижний слой в виде прозрачного раствора, который не содержит солянокислый триэтиламин. Полученный в верхнем слое солянокислый триэтиламин промывают дихлорэтаном и используют как самостоятельный продукт. Изобретение позволяет получить полиэфиры с повышенными показателями огне-, тепло-, термостойкости, а также механических характеристик. 2 н. и 1 з.п. ф-лы, 1 табл., 4 пр. .

Изобретение относится к ароматическим полиэфирам, в частности к ароматическим полиэфирсульфонарилатам, которые могут быть использованы в качестве конструкционных материалов в авиационной, космической, автомобильной и других отраслях промышленности, а также в электронике и электротехнике. Ароматические полиэфиры имеют нижеуказанную формулу, в которой n=1-20; m=1-30; z=1-30. Ароматические полиэфиры получают в две стадии. На первой стадии синтеза проводят акцепторно-каталитическую поликонденсацию олигоэфирсульфона на основе 1,1-дихлор-2,2-ди(n-оксифенил)этилена со степенью конденсации 1-20 с эквимольной смесью дихлорангидрида терефталевой кислоты и 1,1-дихлор-2,2-ди(4-карбоксифенил)этилена в высококипящем растворителе дитолилметане или дифенилоксиде при температуре 25-180°С в течение 0,5 ч. На второй стадии проводят высокотемпературную поликонденсацию в присутствии солянокислого триэтиламина в течение 3 ч при температуре 180°С. Далее раствор полимера разбавляют горячим тетрахлорэтаном и высаживают в изопропанол. Полученный полимер не содержит следов солянокислого триэтиламина. Возогнанный солянокислый триэтиламин собирают с внутренней поверхности крышки реактора, промывают дихлорэтаном и используют как самостоятельный продукт. Изобретение позволяет получить ароматические полиэфиры с высокими показателями огне-, тепло- и термостойкости и высокими механическими характеристиками. 2 н.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к высокомолекулярным соединениям, в частности к ароматическим простым олигосульфонам, предназначенным для получения полиэфирсульфонов с высокими значениями приведенной вязкости и молекулярной массы, повышенными термо-, тепло-, огнестойкостью, хорошо растворимыми в хлорированных углеводородах, легко перерабатываемые методом полива из раствора. Олигосульфоны для поликонденсации имеют нижеуказанную формулу, в которой n=1-20. Изобретение позволяет получить олигомеры, обладающие высокой активностью в реакциях акцепторно-каталитической поликонденсации, и расширить ассортимент олигомеров с концевыми фенольными группами. 4 пр.

Изобретение относится к высокомолекулярным соединениям, в частности к ароматическим простым олигосульфонам, предназначенным для получения полиэфирсульфонов с высокими значениями приведенной вязкости и молекулярной массы, обладающим повышенными термо-, тепло-, огнестойкостью, хорошо растворимым в хлорированных углеводородах и легко перерабатываемым методом полива из раствора. Галогенсодержащие олигосульфоны для поликонденсации имеют нижеуказанную формулу, в которой n=1-10. Изобретение позволяет получить олигомеры, обладающие высокой активностью в реакциях акцепторно-каталитической поликонденсации, а также расширить ассортимент олигомеров с концевыми фенольными группами. 3 пр.

Изобретение относится к огнестойким ароматическим полиэфирам, в частности к ненасыщенным галогенсодержащим ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов в электронике, электротехнике, авиационной, космической, автомобильной и других отраслях промышленности. Ароматические полиэфирсульфоны имеют нижеуказанную формулу, в которой n=1-99, m=1-99, z=1-10. Изобретение позволяет получить полиэфирсульфоны, обладающие повышенными показателями огне-, тепло-, термостойкости и повышенными механическими характеристиками. 10 пр.

Изобретение относится к галогенсодержащим ароматическим полиэфиркетонам. Описан огнестойкий ароматический полиэфир формулы: , где n=20-60. Технический результат – получение огнестойких ароматических полиэфиров, обладающих повышенной тепло- и термостойкостью, а также высокими показателями механических характеристик. 2 пр.

Настоящее изобретение относится к ароматическим полиэфирам. Описаны ароматические полиэфиры формулы: ,где n=1-99, m=1-99, z=1-15. Технический результат – получение ароматических полиэфиров, характеризующихся повышенными показателями огне-, термо-, теплостойкости, а также механических характеристик. 10 пр.

Настоящее изобретение относится к ненасыщенным ароматическим полиэфиркетонам, которые могут быть использованы в качестве конструкционных и пленочных материалов. Описан ненасыщенный ароматический полиэфиркетон формулы , где z=30-70. Технический результат – получение ненасыщенных ароматических полиэфиркетонов, обладающих повышенной тепло- и термостойкостью, а также высокими показателями механических характеристик. 2 пр.

Изобретение относится к неионогенным водорастворимым полимерам диаллильной природы. Предложен поли-N,N-диаллилакриламид формулы (I), где n=100-112. Предложенный полимер получают в водном растворе реакцией радикальной полимеризации N,N-диаллилакриламида в присутствии радикального инициатора в достаточно мягких условиях. Технический результат – предложенное соединение является полиэлектролитом диаллильной природы с высокой молекулярной массой, обладающим высокими комплексообразующими свойствами. 1 ил., 2 табл., 3 пр. (I)

Настоящее изобретение относится к ароматическим полиэфирам формулы: , где ; ,z=30-60. Технический результат – получение ароматических полиэфиров, обладающих повышенными тепло- и термостойкостью, высокими показателями деформационно-прочностных характеристик. 3 пр.

Изобретение относится к высокомолекулярным соединениям, в частности к ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов. Ароматический полиэфирсульфон имеет нижеуказанную формулу, в которой z=30-100. Изобретение позволяет получить ароматический полиэфирсульфон с повышенной тепло-, термо- и огнестойкостью, а также с высокими показателями механических характеристик. 2 пр.

Изобретение относится к высокомолекулярным соединениям, в частности к галогенсодержащим ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов с повышенными эксплуатационными характеристиками. Ароматический полиэфирсульфон имеет нижеуказанную формулу, в которой z=20-70. Изобретение позволяет получить ароматический полиэфирсульфон с повышенными показателями огне-, тепло- и термостойкости, а также высокими показателями механических характеристик. 2 пр.

Изобретение относится к области получения полимерных композиций с высокими механическими и термическими характеристиками. Полимерную композицию на основе полиэтилена высокой плотности стабилизируют циклогексилфосфонатом магния в количестве 0,1-4,0 мас.% путем механического смешения их. Далее полученную смесь экструдируют трижды на одношнековом экструдере при температуре 220-230°C. Изобретение позволяет получить полимерные композиции на основе полиэтилена высокой плотности с высокими термическими и механическими свойствами. 4 табл., 3 пр.

Настоящее изобретение относится к ароматическим полиэфирам формулы: , где z=30-100. Технический результат – получение ароматических полиэфиров, характеризующихся повышенными показателями тепло-, термо-, огнестойкости, а также механическими характеристиками. 3 пр.

Настоящее изобретение относится к галогенсодержащим блок-сополиэфиркетонсульфонам формулы: , где n=1-20; z=3-60; X=H или Br. Технический результат – получение блок-сополиэфиркетонсульфона, обладающего повышенными показателями механических характеристик, а также показателями огне-, тепло- и термостойкости. 8 пр.

Настоящее изобретение относится к галогенсодержащим ароматическим блок-сополиэфиркарбонатам общей формулы: , где n=1-20; z=5-70. Технический результат – получение блок-сополиэфиркарбонатов, характеризующихся повышенными показателями механических характеристик, тепло-, термо- и огнестойкости. 4 пр.

Настоящее изобретение относится к ароматическим блок-сополиэфирам, которые могут быть использованы в качестве конструкционных и пленочных материалов. Описаны огнестойкие блок-сополиэфиркетонкарбонаты формулы: , где n=1-20; z=3-40; X=Н или Br. Технический результат – получение ароматических блок-сополиэфиров, обладающих высокой огне-, тепло- и термостойкостью, а также механическими свойствами. 7 пр.

Настоящее изобретение относится к ароматическим блок-сополиэфирам, которые могут быть использованы в качестве конструкционных и пленочных материалов. Описаны огнестойкие блок-сополиэфирсульфонкарбонаты формулы: , где n=1-20; z=3-40; X=Н или Br. Технический результат – получение блок-сополиэфирсульфонкарбонатов, обладающих повышенными огне-, тепло- и термостойкостью, а также высокими механическими свойствами. 8 пр.

Настоящее изобретение относится к ароматическим блок–сополиэфирам. Описаны ароматические блок-сополиэфиры формулы: где n=1-20; m=2-50; z=2-30. Технический результат – получение ароматических блок-сополиэфиров, обладающих высокими показателями физико-механических характеристик, тепло- и термостойкости. 1 табл., 3 пр.

Настоящее изобретение относится к ароматическим блок-сополиэфиркарбонатам, которые могут быть использованы в качестве конструкционных и пленочных материалов. Описаны галогенсодержащие блок-сополиэфиркарбонаты общей формулы , где n=1-20; z=5-100. Технический результат – получение галогенсодержащих блок-сополиэфиркарбонатов, обладающих высокими механическими характеристиками, тепло-, термо- и огнестойкостью. 4 пр.

Настоящее изобретение относится к ароматическим блок-сополиэфирсульфонам. Описаны блок-сополиэфирсульфоны с дихлорэтиленовыми группами формулы: , где n=1-20; z=5-80. Технический результат – расширение ассортимента ароматических полиэфиров, обладающих высокой тепло- и термостойкостью и высокими механическими свойствами. 1 табл., 4 пр.

Настоящее изобретение относится к новому химическому соединению формулы , которое может быть использовано в качестве мономера для получения поликонденсационных полимеров. Технический результат – расширение ассортимента мономеров с реакционноспособными концевыми группами, вступающих в реакцию поликонденсации. 1 табл., 5 пр.

Изобретение относится к ионогенному водорастворимому полимеру диаллильной природы, а именно к поли–N,N-диаллил-п-аминобензойной кислоте нижеуказанной формулы, где n=100-112, который может быть использован в качестве флокулянта, коагулянта, структуратора почв и пролонгатора лекарственных средств. Изобретение позволяет расширить ассортимент полимеров диаллильной природы и получить полиэлектролит с высокой молекулярной массой, обладающий высокими комплексообразующими свойствами. 1 ил., 2 табл., 3 пр.

Настоящее изобретение относится к ароматическим блок-сополиэфирсульфонам. Описаны блок-сополиэфирсульфоны с дихлорэтиленовыми группами в основной цепи формулы: где n=1-20; z=5-60. Технический результат – получение блок-сополиэфирсульфонов, характеризующихся высокими показателями тепло-, термо-, а также механических характеристик. 1 табл., 4 пр.

Настоящее изобретение относится к полиэфирформалям блочного строения. Описаны ароматические блок-сополиэфиры формулы: где n=1-20; m=2-50; z=2-30. Технический результат - получение полиэфирформалей блочного строения, обладающих высокими тепло- и термостойкостью, высокими механическими характеристиками. 1 табл., 3 пр.

Изобретение относится к новому химическому соединению, конкретно к 2,2-ди-[4,4′{1′1′-дихлор-2′-(4′′-оксифенил)этиленил}фенилкарбонат]пропану в качестве мономера для поликонденсации, формулы: Соединение получают взаимодействием бисхлорформиата 4,4′-диоксидифенилпропана с 1,1-дихлор-2,2-ди(4-оксифенил)этиленом в 1,2-дихлорэтане. При практическом использовании предлагаемого мономера получаются полиэфиры с хорошими значениями молекулярной массы, повышенной огне-, тепло- и термостойкостью, которые сохраняют хорошие диэлектрические свойства в широком интервале температур и частот, легко растворимы в обычных органических растворителях и могут перерабатываться в изделия обычными технологическими методами. 1 табл., 5 пр.

Изобретение относится к ароматическим блок-сополиэфиркетонам формулы: где n, m и z равны 1-20, 20-50 и 2-50 соответственно. Данные блок-сополимеры могут быть использованы в качестве высокопрочных, термо- и теплостойких конструкционных и пленочных материалов. 1 табл., 6 пр.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы где n=1-20; z=2-100; R= . Технический результат - получение ароматических полиэфиров с высокими показателями огне-, тепло-, термостойкости и механических характеристик. 6 пр.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-50; R=, . Технический результат - получение ароматических полиэфиров с высокими показателями огне-, тепло-, термостойкости и механических характеристик. 6 пр.

Настоящее изобретение относится к ароматическим полиэфирам конструкционного и пленочного назначения. Описаны ароматические полиэфиры формулы где n=2-20; z=2-100; R= ,. Технический результат - получение ароматических полиэфиров с высокими показателями огне-, тепло-, термостойкости и механических характеристик. 6 пр.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-100; R= , . Технический результат - ароматические полиэфирсульфонкетоны с высокими показателями огне-, тепло-, термостойкости и механических характеристик. 1 табл., 6 пр.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-100; R= . Технический результат - получение ароматических полиэфиров с высокими показателями огне-, тепло-, термостойкости и механических характеристик. 1 табл., 6 пр.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-100; . Технический результат - ароматические полиэфирсульфонкетоны с высокими показателями огне-, тепло-, термостойкости. 1 табл., 12 пр.

Изобретение относится к полиариленэфиркетонам блочного строения. Описаны полиариленэфиркетоны формулы: , где n=1-20; m=2-100. Технический результат - получение полиариленэфиркетонов, обладающих высокой тепло-, термо-, огне- и химстойкостью, а также высокими механическими характеристиками. 1 ил., 3 табл., 3 пр.

Изобретение относится к высокомолекулярным соединениям, а именно к ароматическим полиэфирсульфонкетонам формулы (I), где n=1-20, z=2-50, конструкционного и пленочного назначения. Изобретение позволяет повысить огне-, тепло-, термостойкость и механические характеристики ароматических полиэфирсульфонкетонов. 12 пр. (I) ; ; ;

Изобретение относится к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы где n=1-20; z=2-100; ; . Технический результат - получение ароматических полиэфирсульфонкетонов, характеризующихся повышенными показателями огне-, тепло-, термостойкости и механических свойств. 6 пр.

Настоящее изобретение относится к высокомолекулярным соединениям, а именно к ароматическим полиэфирам конструкционного и пленочного назначения. Описаны ароматические полиэфиры формулы: где R=, n=2-20; z=2-50. Технический результат - высокопрочные ароматические полиэфиры с высокими показателями огне-, тепло- и термостойкости. 6 пр.

Изобретение относится к высокомолекулярным соединениям, а именно к ароматическим полиэфирсульфонкетонам. Описаны ароматические полиэфирсульфонкетоны формулы где n=1-20; z=2-100; ; ; ; . Технический результат - ароматические полиэфирсульфонкетоны, характеризующиеся повышенными показателями огне-, тепло-, термостойкости и механических характеристик. 12 пр.

Изобретение относится к ионогенным полиэлектролитам диаллильной природы. Описан сополимер N,N-диаллиламинобутандиовой кислоты (ДААсК) с винилацетатом (BA) формулы, представленной ниже, где 0.1≤m≤0.9; 0.1≤n≤0.9; z=80-150, в качестве полиэлектролита диаллильной природы. Формула: Технический результат - получение полиэлектролитов с высокой молекулярной массой полимеров и сополимеров диаллильной природы, обладающих высокими комплексообразующими свойствами, в молекуле которых содержатся как отрицательно заряженные, так и положительно заряженные функциональные группы, с регулируемым кислотно-основным и гидрофильно-гидрофобным балансом, который может быть использован в качестве флокулянтов, коагулянтов, структураторов почв, пролонгаторов лекарственных средств. 1 ил. ,1 табл., 4 пр.

Настоящее изобретение относится к блок-сополиэфирам. Описаны ароматические блок-сополиэфиры формулы где ; , n=1-20; m=20-50; z=2-50. Технический результат - получение высокопрочных, термо- и огнестойких блок-сополиэфиров. 1 табл., 6 пр.

Настоящее изобретение относится к ароматическим полиэфирам. Описаны ароматические полиэфиры формулы: где , n=2-20; z=2-100. Технический результат - получение ароматических полиэфиров с высокими показателями огне-, тепло-, термостойкости. 1 табл., 9 пр.

Настоящее изобретение относится к ароматическим полиэфирам. Описаны ароматические полиэфиры формулы где n=2-20; z=2-100; ; . Технический результат - получение ароматических полиэфиров с высокими показателями огне-, тепло- и термостойкости. 1 табл., 6 пр.

 


Наверх