Патенты автора Агиевич Сергей Николаевич (RU)

Изобретение относится к области космонавтики, а именно к технике выполнения траекторных измерений и определения параметров орбиты космического аппарата (КА), и может быть использовано на наземных и бортовых комплексах управления полетом КА для точного определения текущих параметров движения КА. Техническим результатом является повышение точности определения ортогональных составляющих векторов скорости основного космического аппарата (ОКА) и смежного космического аппарата (СКА). Способ определения векторов скорости ОКА и СКА включает излучение в момент времени t0 тестового радиосигнала излучающей опорной реперной станции (ИОРС) со значением номинала частоты fн, измерение в приемной радиотехнической станции (ПРТС) номиналов частот тестового радиосигнала ИОРС и после его ретрансляции ОКА и СКА соответственно, измерение для каждой n-й земной станции (ЗС) с известными координатами xIn, yIn, zIn, где n=1…N - номер ЗС, N≥4, значений номиналов частот и принятых радиосигналов после их ретрансляции ОКА и СКА соответственно, расчет ортогональных составляющих векторов скорости ОКА и СКА на основе измеренных частотных сдвигов радиосигналов системы. 2 з.п. ф-лы, 5 ил.

Изобретение относится к технике траекторных измерений и может использоваться на наземных и бортовых комплексах управления полетом КА для определения текущих параметров движения КА. Технический результат состоит в повышении точности определения ортогональных составляющих вектора скорости КА. Для этого выбирают земные станций (ЗС) и устанавливают излучающую опорную реперную станцию (ИОРС) так, чтобы взаимные расстояния между ЗС, а также расстояния между ЗС и ИОРС были максимальны. Измеряют в приемной радиотехнической станции (ПРТС) значения разности частот между излученным и принятым тестовым радиосигналом ИОРС после его ретрансляции основным КА; измеряют в ПРТС значения номиналов частот принятых радиосигналов n-х ЗС после их ретрансляции основным и смежным космическими аппаратами соответственно; рассчитывают ортогональные составляющие вектора скорости основного КА на основе измеренных частотных сдвигов радиосигналов системы. 1 з.п. ф-лы, 5 ил.

Изобретение относится к радиотехнике и может использоваться для определения координат космического аппарата (КА) на наземных и бортовых комплексах управления полетом КА. Технический результат состоит в повышении точности определения координат основного космического аппарата (ОКА) и смежного космического аппарата (СКА). Для этого в приемной радиотехнической станции (ПРТС) измеряют значения временных задержек между переданным тестовым радиосигналом и его принятыми реализациями после ретрансляции ОКА и СКА; в ПРТС измеряют временные задержки между принятыми радиосигналами после их ретрансляции ОКА и СКА соответственно; рассчитывают координаты ОКА и СКА на основе указанных временных задержек радиосигналов системы. Выбор земных станций (ЗС) и установку излучающей опорной реперной станции (ИОРС) осуществляют так, чтобы взаимные расстояния между ЗС, а также расстояния между ЗС и ИОРС были максимальными. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники, а именно к технике создания искусственных радиопомех, и, в частности, может быть использовано для радиоподавления (РП) спутниковых командно-программных радиолиний (КПРЛ) управления космическими аппаратами (КА), расположенными на низких околоземных орбитах (НОО), функционирующих через каналы ретрансляции данных космических аппаратов (КА) космических систем ретрансляции данных (КСРД). Технический результат состоит в разработке способа РП спутниковых КУ, обеспечивающего избирательное РП спутниковых КУ подавляемых КА, находящихся вне зоны прямой радиовидимости автоматизированной станции помех. Для этого принимают сигналы от установленного на подавляемом КА источника излучения, ретранслированные через космический аппарат-ретранслятор (КАр) во всех рабочих частотных диапазонах. Идентифицируют обнаруженный сигнал как сигнал КУ "Земля-КАр-КА". Определяют принадлежность обнаруженного сигнала КУ "Земля-КАр-КА" к подавляемому КА. Определяют и запоминают значение частоты КУ "КА-КАр-Земля". Формируют, модулируют, усиливают и излучают помеховый сигнал на частоте, соответствующей ранее запомненному значению частоты КУ "КА-КАр-Земля". Оценивают эффективность РП КУ, для чего непрерывно контролируют информацию о счетчике номеров кадров телекоманд с наземной станции управления. Если в сигнале источника излучения принимаемые значения счетчика номеров кадров имеют пропуски, то РП считают эффективным, в обратном случае итеративно увеличивают эффективную изотропно излучаемую мощность помехового сигнала и оценивают эффективность РП КУ до тех пор, пока при очередной итерации в принятом сигнале КУ "Земля-КАр-КА" не появятся пропуски в номерах кадров телекоманд. 1 з.п. ф-лы, 3 ил.

Заявленная группа изобретений относится к области космонавтики, а именно к технике выполнения траекторных измерений и определения координат и ортогональных составляющих векторов скоростей КА, и может быть использована на наземных и бортовых комплексах управления полетом КА для точного определения текущих параметров движения КА. Техническим результатом изобретений является повышение точности определения координат и ортогональных составляющих векторов скорости двух КА. Способ определения векторов скорости основного и смежного КА включает: измерение в наземной радиотехнической станции (НРТС) K значений номиналов частот принятых радиосигналов n-х ЗС In после их ретрансляции основным S1 и смежным КА S2 соответственно, излучение тестовых радиосигналов с помощью НРТС, прием их после ретрансляции основным КА S1 и смежным КА S2 соответственно и измерение их частот расчет радиальных скоростей основного и смежного КА относительно НРТС K, расчет координат основного х1, у1, z1 и смежного КА х2, у2, z2, вычисление ортогональных составляющих вектора скорости основного КА Способ определения координат основного х1, у1, z1 и смежного КА х2, у2, z2 включает: измерение в НРТС K для каждой n-й ЗС In значений временных задержек Δtn между принятыми радиосигналами после их ретрансляции основным S1 и смежным КА S2 соответственно, излучение тестовых радиосигналов с помощью НРТС, прием их после ретрансляции основным КА S1 и смежным КА S2 соответственно и измерение временных задержек расчет расстояний от НРТС до основного и смежного КА расчет координат основного КА х1, у1, z1. 2 н. и 2 з.п. ф-лы, 7 ил., 2 прил.

Заявленная группа изобретений относится к области космонавтики, а именно к технике выполнения траекторных измерений, определения координат и ортогональных составляющих вектора скорости КА, и может быть использована на наземных и бортовых комплексах управления полетом КА для точного определения текущих параметров движения КА. Техническим результатом изобретения является повышение точности определения координат и ортогональных составляющих вектора скорости КА. Способ определения вектора скорости основного КΑ , , включает: измерение в наземной радиотехнической станции (НРТС) K значений номиналов частот и принятых радиосигналов n-х ЗС In, после их ретрансляции основным S1 и смежным КА S2 соответственно излучение тестового радиосигнала с помощью НРТС, прием его после ретрансляции основным КΑ S1 и измерение его частоты , расчет радиальной скорости основного КА относительно НРТС K, расчет координат основного КΑ x1, y1, z1, вычисление ортогональных составляющих вектора скорости основного КΑ , , . Способ определения координат основного КА х1, y1, z1 включает: измерение в НРТС K для каждой n-й ЗС In значений временных задержек Δtn между принятыми радиосигналами после их ретрансляции основным S1 и смежным КА S2 соответственно, излучение тестового радиосигнала с помощью НРТС, прием его после ретрансляции основным КА S1 и измерение временной задержки , расчет расстояния , расчет координат основного КА x1, y1, z1. 2 н. и 2 з.п. ф-лы, 7 ил., 2 прил.

Заявленная группа изобретений относится к области космонавтики, а именно к технике выполнения траекторных измерений, определения координат и ортогональных составляющих вектора скорости космического аппарата (КА), и могут быть использованы на наземных и бортовых комплексах управления полетом КА для точного определения текущих параметров движения КА. Техническим результатом является повышение точности определения координат и ортогональных составляющих вектора скорости КА. Способ определения вектора скорости основного КА включает: измерение в наземной радиотехнической станции (НРТС) K значений номиналов частот принятых радиосигналов n-х земных станций (ЗС) In после их ретрансляции основным S1 и смежным S2 КА соответственно, расчет координат основного КА х1, у1, z1, вычисление ортогональных составляющих вектора скорости основного КА Способ определения координат основного КА х1, у1, z1 включает: измерение в НРТС K для каждой n-й ЗС In значений временных задержек Δtn между принятыми радиосигналами после их ретрансляции основным S1 и смежным КА S2 соответственно, расчет координат основного КА x1, y1, z1. 2 н. и 2 з.п. ф-лы, 2 прил., 7 ил.

Изобретение относится к области маскировки наземных мобильных объектов (НМО) от космических систем радиолокационного наблюдения. Способ скрытия НМО от радиолокационного наблюдения из космоса включает прием радиосигналов от космического радиолокатора (КРЛ) в N≥2 моментов времени tn, где n=1…N, определение координат КРЛ для каждого момента времени tn, измерение длительности импульса τи, измерение периодов повторения импульсов Tи(tn), построение семейства рабочих и нерабочих зон относительно каждого положения КРЛ. В случае, если НМО находится в одной из рабочих зон КРЛ во все моменты времени tn, применяют меры его скрытия от радиолокационного наблюдения из космоса, а именно, на пути распространения зондирующего сигнала создают рассеивающую и поглощающую среду в виде облака аэрозоля путем разрыва пиротехнического снаряда. Техническим результатом изобретения является сокращение времени преодоления НМО выбранного маршрута в условиях защиты от радиолокационного наблюдения из космоса за счет своевременного выявления факта нахождения НМО в одной из рабочих зон КРЛ и принятия мер скрытия от радиолокационного наблюдения из космоса. 5 з.п. ф-лы, 24 ил.

Изобретение относится к области космонавтики, а именно к технике выполнения траекторных измерений и определения параметров орбиты искусственного спутника Земли (ИСЗ), и может быть использовано на наземных и бортовых комплексах управления полетом ИСЗ для точного определения текущих параметров движения ИСЗ. Технический результат состоит в повышении точности определения параметров орбиты ИСЗ. Для этого используют наземную радиотехническую станцию (НРТС) в приемо-передающим режиме, размещенную на позиции с известными координатами приемо-передающих опорных реперных станций (ППОРС) на позициях с известными координатами. Способ основан на излучении тестовых радиосигналов НРТС и М ППОРС и последующего приема этих тестовых радиосигналов после ретрансляции ИЗС с помощью НРТС и МППОРС. В НРТС и каждой из М ППОРС измеряют наклонные дальности от ИСЗ до НРТС и М ППОРС, а также радиальные скорости ИСЗ относительно НРТС и М ППОРС. В качестве параметров орбиты ИСЗ принимают совокупность координат ИСЗ и ортогональных составляющих вектора его скорости в момент времени t0, вычисленных в НРТС на основе измеренных дальностей, а также радиальных скоростей. 5 ил.

Изобретение относится к области космонавтики, а именно к технике выполнения траекторных измерений и определения параметров орбиты искусственного спутника Земли (ИСЗ), и может быть использовано на наземных и бортовых комплексах управления полетом ИСЗ для точного определения текущих параметров движения ИСЗ. Технический результат изобретения - повышение точности определения параметров орбиты ИСЗ, обеспечение более широкой области применения за счет использования наземной радиотехнической станции (НРТС), размещенной на позиции с известными координатами, работающей в режиме приема и М≥3 приемных опорных реперных станции (ПОРС) на позициях с известными координатами. Способ основан на приеме и записи радиосигналов НРТС и МПОРС от ИСЗ совместно с метками времени. С помощью корреляционной обработки измеряют значения взаимных временных задержек и частотных сдвигов. Вычисляют координаты ИСЗ по известным координатам НРСТ и М ПОРС, а также рассчитанным разностям дальностей ΔRm, где m - номер ПОРС. Вычисляют ортогональные составляющие вектора скорости ИСЗ по известным координатам НРСТ и М ПОРС, вычисленным координатам ИСЗ, рассчитанным разностям радиальных скоростей и предварительно заданной частоте сдвига рабочей частоты ИСЗ. В качестве параметров орбиты ИСЗ принимают совокупность координат ИСЗ и ортогональных составляющих вектора его скорости в момент времени t0. 5 ил., 4 прил.

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения подвижного ИРИ на произвольной высоте, в частности, расположенного на летательном аппарате. Технический результат изобретения - разработка высокоточного способа определения координат ИРИ в пространстве на основе использования сферических поверхностей положения (СПП) ИРИ, формируемых вращением окружностей Апполония вокруг осей, соединяющих соответствующие фокусы. При этом в качестве фокусов окружностей Апполония выступают точки расположения измерителей в 3-мерном пространстве в условиях наложения ограничения на время, затрачиваемое на определение координат ИРИ. Способ основан на приеме радиосигналов ИРИ в заданной полосе частот ΔF с помощью N≥5 измерителей с известными координатами и запоминании N≥5 координатно-информативных параметров, в качестве которых используют амплитуды напряженностей электрического поля в местах расположения измерителей, при этом вычисляют N-1 коэффициентов окружностей Апполония, формируют N-1 СПП ИРИ, а в качестве координат ИРИ в пространстве принимают координаты точки пересечения N-1 указанных СПП ИРИ. Приложения А, Б, В, 3 ил.

Изобретение относится к области радиотехники и может быть использовано для мониторинга космических радиолиний (КРЛ) абонентов спутниковой системы персонального радиосервиса (ССПРС) Iridium. Технический результат состоит в разработке способа, обладающего увеличенной дальностью и быстродействием мониторинга всех типов КРЛ ССПРС Iridium. Для этого мониторинг КРЛ ССПРС Iridium обратного канала ведут путем приема сигналов, ретранслированных от космических аппаратов ССПРС Globalstar в диапазоне частот ССПРС Globalstar. А для мониторинга прямого канала КРЛ ССПРС Iridium используют дополнительную приемную станцию мониторинга, которая принимает сигналы в диапазоне частот ССПРС Iridium. 1 ил.

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения абонентского терминала (AT) по радиосигналам, принятым от Q ≥ 2 спутников-ретрансляторов на низкой околоземной орбите. Достигаемым техническим результатом изобретения является повышение точности определения координат AT за счет более точного определения временных задержек и частотных сдвигов сигналов системы, проведения избыточных измерений при одновременном исключении необходимости ответной передачи тестовых сигналов с AT. Способ основан на размещении комплекса радиоэлектронного мониторинга (КРМ) и М≥2 излучающих опорных реперных станций (ИОРС) на позициях с известными координатами, задании района ведения радиомониторинга (РВРМ), излучении КРМ и m-ми, где m=1…М, ИОРС тестовых радиосигналов в моменты времени tn, где n=1…N, N≥1, приеме в КРМ указанных тестовых радиосигналов после их ретрансляции q-ми, где q=1…Q, спутниками-ретрансляторами, определении канонических параметров (КП) спутников-ретрансляторов в моменты времени tn, выборе в качестве поверхности земли сферы с радиусом, рассчитываемым на основе средней широты РВРМ, и последующем расчете координат AT хА, yA, zA. 1 з.п. ф-лы, 5 ил., 3 прил.

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения абонентского терминала (AT) по радиосигналам, принятым от спутника-ретранслятора (CP) на низкой околоземной орбите. Технический результат состоит в повышении точности определения частотных сдвигов сигналов системы. Для этого способ основан на размещении комплекса радиоэлектронного мониторинга (КРМ) и М≥2 излучающих опорных реперных станций (ИОРС) на позициях с известными координатами, задании района ведения радиомониторинга (РВРМ), излучении с помощью аппаратуры КРМ и m-ми, где m=1…М, ИОРС тестовых радиосигналов в моменты времени tn, где n=1…N, N≥3, приеме в КРМ указанных тестовых радиосигналов после их ретрансляции CP, определении канонических параметров CP в моменты времени tn, выборе в качестве поверхности земли сферы с радиусом, рассчитываемым на основе средней широты РВРМ, и последующем определении местоположения AT на поверхности земли. 1 з.п. ф-лы, 5 ил.

Изобретение относится к технике связи, в частности для создания искусственных радиопомех, и может быть использовано для радиоподавления (РП) спутниковых командно-программных радиолиний (КПРЛ), функционирующих по стандартам CCSDS. Технический результат изобретения заключается в разработке способа РП спутниковых каналов управления (КУ), обеспечивающего РП спутниковых КУ с заранее неизвестными значениями рабочих частот и объективный контроль эффективности РП при постановке помех. Для радиоподавления спутниковых каналов управления принимают сигналы источника излучения во всех поддиапазонах работы Δf1, Δf2 … Δfi, идентифицируют обнаруженный сигнал как сигнал КУ "космический аппарат - Земля" ("КА-Земля"), определяют и запоминают значение частоты КУ "Земля-КА", формируют сигналы управления режимом передачи и излучают помеховый сигнал на частоте, соответствующей ранее запомненному значению частоты КУ "Земля-КА". Оценивают эффективность РП КУ, для чего повторно принимают сигнал источника излучения на частоте КУ "КА-Земля" и фиксируют наличие в нем информации, передаваемой в целях квитирования телекоманд с наземной станции управления. Если указанная информация имеет место, то последовательно увеличивают эффективную изотропно излучаемую мощность помехового сигнала до тех пор, пока не прекратится передача квитанций о приеме телекоманд на частоте КУ "КА-Земля". 2 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике и может быть использовано в системах радиосвязи, использующих широкополосные сигналы. Техническим результатом изобретения является разработка способа формирования сигнала с псевдослучайной перестройкой рабочей частоты (ППРЧ), обеспечивающего повышение структурной скрытности формируемого сигнала. Способ формирования сигнала с псевдослучайной перестройкой рабочей частоты (ППРЧ) основан на генерировании первичного сигнал S(t) в базисах функций сплайн-характеров (БФСХ), модуляции его цифровой последовательностью С(t), формировании опорного колебания M(t), перемножении модулированного сигнала S'(t) с опорным колебанием M(t). Частоты ƒ1, ƒ2, … опорного колебания M(t) определяют в соответствии с заданной случайной кодовой цифровой последовательностью O2(t). Значения изменяющихся параметров БФСХ выбирают в соответствии с заданной псевдослучайной кодовой цифровой последовательностью O1(t) синхронно с изменением частоты опорного колебания M(t), причем псевдослучайную кодовую цифровую последовательность O1(t) формируют в виде С=А составных частей , , где А - количество изменяющихся параметров БФСХ. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники, и может быть использовано для оценки эффективности радиоподавления линий спутниковой связи в условиях, исключающих деструктивное воздействие на сигналы линий спутниковой связи, а также для подготовки и тренировки экипажей станции помех. Технический результат - оценка эффективности радиоподавления, при котором не будет происходить нарушение работы спутниковой связи, и обеспечение возможности проводить обучение, подготовку и тренировку экипажей станции помех без нанесения деструктивного урона системам спутниковой связи. Для этого в способе оценки эффективности радиоподавления сигнала спутниковой связи при воздействии помехи по входу приемной системы ретранслятора вычисляют также уровень шума в линии спутниковой связи, а перед воздействием помех излучаемую мощность помехи снижают до такого уровня, чтобы уровень помехи в линии спутниковой связи не превышал измеренный уровень шума. Причем сформированную помеху запоминают, а уровень мощности сигнала спутниковой связи и расстройку несущей частоты сигнала спутниковой связи при воздействии помех измеряют только после процедуры определения уровня корреляции сигнала спутниковой связи при воздействии помех с запомненной сформированной помехой. 5 ил.

Изобретение относится к радиотехнике, а именно к способам определения местоположения источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения ИРИ с летательного аппарата (ЛА), в частности с беспилотного ЛА. Техническим результатом изобретения является повышение точности определения координат ИРИ в пространстве на основе использования сферических поверхностей положения (СПП) ИРИ, формируемых вращением окружностей Аполлония вокруг осей, соединяющих соответствующие фокусы. При этом в качестве фокусов окружностей Аполлония выступают точки расположения ЛА в 3-мерном пространстве в различные моменты времени. Способ основан на приеме радиосигналов ИРИ в заданной полосе частот ∆F перемещающимся в пространстве измерителем, размещенным на ЛА, измерении и запоминании первичных координатно-информативных параметров, в качестве которых используют амплитуды напряженностей электрического поля (АНЭП), с одновременным измерением и запоминанием вторичных параметров (ВП) - пространственных координат ЛА, при этом измеряют и запоминают N≥5 раз совокупности АНЭП и ВП в процессе перемещения ЛА по произвольной траектории, вычисляют N-1 коэффициентов окружностей Аполлония, формируют N-1 СПП ИРИ, а в качестве координат ИРИ в пространстве принимают координаты точки пересечения N-1 указанных СПП ИРИ. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технике создания искусственных радиопомех и может быть использовано для радиоподавления (РП) каналов связи (КС) систем мобильного радиосервиса (СМРС). Целью технического решения является разработка способа, обеспечивающего РП абонентских терминалов (AT), находящихся в зоне, обслуживаемой каналом управления (КУ) "вниз" источника сообщений (ИС), с возможностью контроля эффективности постановки помех, не требующего дополнительного оборудования для выявления режима работы подавляемых AT. Поставленная цель достигается тем, что принимают сигнал ИС на частоте КУ "вниз", определяют и запоминают номера КУ "вверх" и соответствующие этим номерам значения частот КУ "вверх". Затем формируют сигнал управления параметрами помехи по количеству выявленных и запомненных номеров частотных КУ "вверх". После чего излучают помеху на частоте, соответствующей ранее запомненному номеру КУ. Контролируют эффективность РП путем последующего за излучением помехи приема информации от ИС о частотно-временных характеристиках сигналов, передаваемых от ИС к AT для организации связи между ними. Если указанные назначения имеют место, то последовательно увеличивают эффективную изотропно излучаемую мощность помехи до тех пор, пока не прекратится передача информации на частоте КУ "вниз". 1 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике и может быть использовано для создания преднамеренных помех системам связи с псевдослучайной перестройкой рабочей частоты (ППРЧ). Технический результат - обеспечение эффективного радиоподавления заданной радиосети с ППРЧ при одновременном существенном сокращении энергетических затрат. Технический результат достигается, в том числе, и тем, что вскрывают адресную группу частот, используемую в подавляемой радиосети, а начало формирования помехового сигнала согласованной структуры и заданной длительности осуществляют на этих частотах в паузе работы абонентов сети. Устройство создания преднамеренных помех содержит первую и вторую антенные системы, многоканальное радиоприемное устройство, блок аналого-цифрового преобразования, селектор сигналов, блок определения рабочих частот, блок определения граничных частот, блок определения адресной группы частот, передатчик помех, блок опорных частот с соответствующими связями, блок определения пауз, а также блок управления во втором варианте устройства и коммутатор, многоканальный блок обнаружения пауз, блок управления, сумматор, m-1 передатчиков помех и m-1 вторых антенных систем в третьем варианте устройства. 4 н. и 2 з.п. ф-лы, 14 ил.

Изобретение относится к технике создания преднамеренных помех

Изобретение относится к распознаванию образов, а именно - к способам распознавания радиосигналов, в частности к способам распознавания вида и параметров модуляции радиосигналов

 


Наверх