Патенты автора Каминский Владимир Васильевич (RU)

Изобретение относится к термоэлектрическим генераторам на основе полупроводниковых структур. Сущность: способ изготовления термоэлектрического генератора включает выкалывание из слитка сульфида самария SmS плоскопараллельной пластины (3), нанесение самария (2) на поверхность первого плоского токового контакта (1), выполненного из тугоплавкого металла, наложение на самарий (2) плоскопараллельной пластины (3), отжиг полученной структуры в вакууме при температуре 1072-1200°С в течение времени t, определяемого из заданного соотношения, и последующее формирование на поверхности плоскопараллельной пластины второго токового контакта (4). Технический результат: повышение стабильности и воспроизводимости электрического сигнала генератора. 5 з.п. ф-лы, 7 ил.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания довзрывных концентраций метана в атмосферном воздухе, и может быть использовано в угольной, металлургической, коксохимической и атомной промышленности, а также в автомобильной промышленности. Полупроводниковый датчик метана содержит диэлектрическую подложку (1) и чувствительный слой (2) с нанесенными на его поверхность металлическими электродами (3) толщиной до 0,2 мкм. Чувствительный слой (2) выполнен на основе сульфида европия, модифицированного добавкой сульфида самария. Концентрация добавки не превышает 25 мол.%. Датчик имеет пониженную рабочую температуру детектирования метана в атмосферном воздухе. 3 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к технологии синтеза полупроводниковых материалов и может быть использовано при массовом производстве тензочувствительных материалов на основе сульфида самария (SmS). Для синтеза материала состава Sm1+xS, где 0≤x≤0,17, берут в измельченном виде Sm2S3 и Sm в мольном соотношении (1+3x):1. Взятые вещества перемешивают и брикетируют. Затем выдерживают при температуре твердофазной реакции в сосуде, заполненном инертным газом, в течение времени t, которое превышает или равно значению, рассчитанному по формуле nL2exp(m/T), где t - время выдержки, с; Т - температура твердофазной реакции, К; L - максимальный поперечный размер частиц порошка Sm2S3, мкм; n - эмпирический коэффициент, равный 2·10-8 с/мкм2; m - эмпирический коэффициент, равный 2,25·104 К. Изобретение позволяет упростить синтез, уменьшить его длительность, обеспечить возможность варьирования заданного состава материала Sm1+xS и высокую степень соответствия составов полученного и заданного материалов. 2 н. и 4 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Использование: для изготовления датчиков деформации, силы, давления, перемещения, вибрации. Сущность изобретения заключается в том, что тензорезистор включает диэлектрическую подложку с нанесенной тензочувствительной пленкой из Sm1-xEuxS, где 0,22≤x≤0,5. Технический результат: обеспечение возможности повышения чувствительности измерений тензорезистора. 1 ил., 1 табл.

Изобретение относится к области преобразования тепловой энергии в электрическую с помощью полупроводниковых термоэлектрических генераторов. Сущность: термоэлектрический генератор содержит по крайней мере один слой полупроводникового материала Sm1+xLnyS на основе сульфида самария, легированного атомами Ln семейства лантаноидов, расположенный между токовыми контактами. Концентрация x атомов самария в слое составляет x≤0,2, концентрация y атомов Ln составляет для гадолиния Gd или церия Се y≤0,15, для европия Eu или иттербия Yb y≤0,2 Технический результат: увеличение до 5 В генерируемого напряжения (термо-ЭДС), увеличение максимальной электрической мощности до нескольких сотен мкВт. 3 н.п. ф-лы, 9 ил.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания кислорода. Газовый датчик согласно изобретению содержит диэлектрическую подложку с нанесенным слоем полупроводникового материала толщиной от 0,07 мкм до 0.2 мкм. На слой нанесены металлические электроды. В качестве полупроводникового материала используется поликристаллический материал состава Sm1-xLnxS, где x изменяется от 0 до 0.14, а Ln представляет собой один из элементов: La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. Изобретение обеспечивает возможность изготовления датчика для измерения содержания кислорода, обладающего повышенной чувствительностью. 1 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к измерительной технике и может быть использовано в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.)

Изобретение относится к измерительной технике и может быть использовано как в прочностных испытаниях для определения напряженного состояния конструкций, так и в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.)

Изобретение относится к измерительной технике и может быть использовано в прочностных испытаниях для определения напряженного состояния конструкций и в качестве чувствительного элемента в датчиках механических величин (силы, давления, веса, перемещения и т.д.)

 


Наверх