Патенты автора Каплунов Иван Александрович (RU)

Изобретение относится к способу обработки поверхности цветного металла путем формирования микрорельефа и может найти применение в разных секторах металловедения и металлообработки. Осуществляют механическую обработку выбранной зоны поверхности с чистотой поверхности Rz не более 1 мкм, а затем обработку выбранной зоны облучением лазерным излучением. Облучение выполняют на лазерной длине волны используемого лазерного источника при плотности энергии в импульсе 0,1-1 Дж/см2 по растровой траектории с обеспечением перекрытия пятен лазерного пучка не менее 95%. Каждую зону обработки облучают серией из нескольких десятков лазерных импульсов с длительностью 10-12 - 3⋅10-8 с, обеспечивающей проявление регулярного микрорельефа на приповерхностном слое меди или ее сплава без их плавления. После проявления регулярного микрорельефа на приповерхностном слое меди или ее сплава перемещают пятно от лазерного луча по зоне и повторяют лазерную обработку. Технический результат заключается в обеспечении возможности выявления зернограничной структуры и получения регулярного микрорельефа поверхности меди или ее сплава без заметного кратерообразования на поверхности, ухудшающего качество поверхности. 11 з.п. ф-лы, 2 ил.

Изобретение относится к области лазерной техники и может быть использовано в технологических целях для оценки плотности дислокаций при работе с монокристаллическим германием. Способ получения микроструктур на поверхности полупроводника согласно изобретению включает облучение поверхности полупроводника на лазерной длине волны, при этом для облучения каждой зоны используют серию лазерных импульсов с частотой следования лазерных импульсов, плотностью энергии лазерного пучка в облучаемой зоне и длительностью импульса, обеспечивающих изменение микроструктуры поверхности приповерхностного слоя полупроводника без его плавления, при этом полупроводник выполняют в виде монокристаллического германия с кристаллографической ориентацией <111> и отполированной подвергаемой облучению поверхностью, облучение поверхности монокристаллического германия осуществляют лазерным пучком при плотности энергии в импульсе 0,1-1,15 Дж/см2 по растровой траектории с возможностью обеспечения перекрытия пятен лазерного пучка на подвергаемой облучению поверхности не менее 95%, облучение осуществляют на длине волны вне зоны прозрачности германия, при этом каждую зону облучают серией из нескольких десятков лазерных импульсов, длительность импульса не менее 1 нс и не более 30 нс. Изобретение обеспечивает повышение качества проявления регулярного микрорельефа поверхности монокристаллического германия и определения перепадов по высоте на поверхности микрорельефа. 6 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для неразрушающего контроля удельного электросопротивления полупроводниковых кристаллических материалов, в частности монокристаллов германия. В способе согласно изобретению образец размещают на подложке, экранирующей электромагнитное излучение от нагревательного элемента, быстро нагревают, регистрируют его тепловизионное изображение, определяют опорные точки, имеющие минимальную и максимальную температуру образца, измеряют в этих точках электросопротивление четырехзондовым методом, строят температурные профили и на их основании с помощью предложенной формулы. Изобретение обеспечивает возможность осуществлять контроль распределения удельного электросопротивления полупроводниковых материалов более точно с минимальным повреждением поверхности образца. 4 ил.

Изобретение относится к области оптико-электронного приборостроения и касается детектора лазерного излучения в ИК-диапазоне. Детектор содержит размещенный в корпусе и закреплённый в кристаллодержателе приемный элемент на основе полупроводникового монокристалла р-типа, электрически соединённые омические контакты, расположенные на противоположных концах приемного элемента, высокочастотный разъём, электрически соединенный с регистрирующим прибором, и переключатель изменения рабочей длины приемного элемента, электрически соединенный с высокочастотным разъёмом. Приемный элемент имеет длину более одного сантиметра и выполнен с возможностью размещения на нём с заданным интервалом дополнительных омических контактов. Переключатель выполнен с возможностью электрического соединения с любой парой омических контактов. Технический результат заключается в увеличении временного разрешения, обеспечении возможности детектирования лазерных импульсов в субнаносекундной области и упрощении измерительной системы. 8 з.п. ф-лы, 4 ил.

Изобретение относится к области оптики, а именно к способам определения оптической однородности и выявления структурных дефектов оптических кристаллов, и может быть использовано для контроля качества одноосных кристаллов. Целью изобретения является разработка способа определения степени однородности одноосных кристаллов, позволяющего определять их пригодность для использования в электронно-оптических и акустооптических устройствах. Сущность: проводят анализ с помощью специализированного программного обеспечения зарегистрированных методом лазерной коноскопии в различных положениях образца относительно оптической системы интерференционных картин, при этом в процессе анализа производят попиксельное вычитание полученных изображений друг из друга по параметрам RGB с формированием результирующего массива значений, из данного массива определяют количество пикселей со значениями RGB (0,0.0), вычисляют отношение k этого количества N0 к общему числу пикселей получаемого изображения N, где k=1 характеризует однородность идеального кристалла. Технический результат заключается в повышении точности измерения однородности оптических элементов, выявлении дефектных областей с незначительными отклонениями показателей преломления. 5 ил.

Изобретение относится к области цветной металлургии, в частности, к получению полупроводниковых материалов, и может быть использовано в производстве сырьевого германия, применяемого для выращивания монокристаллов для оптического применения. Слиток германия, очищенного от примесей, получают путем диспергирования германия в реакционной камере до капельно-газовой смеси в восстановительной среде. Реакционную камеру, содержащую металлоприемник, вакуумируют, нагревают до температуры 950-1000°С для расплавления германия, после чего в реакционную камеру подают предварительно нагретый до температуры 525-545°С газ-реагент для создания восстановительной среды. Металлоприемнику с расплавом германия задают вращение 25-30 об/мин. Диспергирование осуществляют путем дозированной подачи расплава из металлоприемника с расходом 0,1-0,12 кг/мин на вращающийся разбрызгиватель, горизонтально установленный в реакционной камере, и разбрызгивания под действием центробежной силы. При этом обеспечивают прохождение капель расплава через среду газа-реагента, стекание по стенкам реакционной камеры и скапливание на ее дне. После кристаллизации расплава и остывания реакционной камеры извлекают полученный слиток германия. Способ позволяет повысить качество очистки сырьевого германия. 4 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к измерительной технике и области оптического приборостроения, а именно к неразрушающему контролю качества материалов, в частности к бесконтактным способам дефектоскопии прозрачных материалов. Сущность изобретения заключается в том, что в способе оптической томографии прозрачных оптических материалов заготовку оптической детали из прозрачного оптического кристалла, предназначенного для изготовления инфракрасной оптики, облучают пучком импульсно-периодического лазерного излучения, луч лазера проходит через всю заготовку оптической детали, при этом дефекты (неоднородности) в заготовке оптической детали для нее визуализируют с помощью по крайней мере одного тепловизора, а по полученным картинам анализируют как индикатрисы рассеяния, так и индикатрисы теплового излучения дефектов. Технический результат – повышение точности определения оптической однородности заготовки оптической детали из прозрачного для используемого лазерного излучения оптического кристалла, возможность выявления микродефектов в объеме материала, линейные размеры которых могут не превышать 1 мкм. 11 з.п. ф-лы, 1 ил.

Изобретение относится к области температурных измерений и касается способа измерения температуры локальных участков поверхности расплава в тигле при выращивании методом Чохральского монокристаллов веществ с температурами плавления выше 650°C. Способ включает в себя фотографирование цифровым цветным аппаратом через смотровое окно камеры ростовой установки видимой поверхности расплава с кристаллом, перенесение файла с изображением на компьютер, расчет на основании закона Стефана-Больцмана для интегральной светимости АЧТ температуры по яркости пикселей трех цветовых RGB каналов, выставление в окне программы известного значения температуры плавления выращиваемого кристалла, калибровку программы, наведение курсора на интересующую точку или на участок с выбранными малыми размерами 3×3, 5×5 или 7×7 пикселей, в пределах которого проводится усреднение температуры, считывание значения температуры в окне пользовательского интерфейса. Калибровка программы включает в себя наведение курсора на точку в изображении линии соприкосновения кристалла с расплавом, температура в которой принимается за температуру плавления. Технический результат заключается в повышении точности измерений и улучшении структурного качества кристаллов. 4 ил.
Изобретение относится к области выращивания монокристаллов германия из расплава. Сущность изобретения заключается в осуществлении извлечения шлаков (окисные пленки) с поверхности расплава, а также и со стенок тигля ниже уровня расплава германия в тигле. Это позволяет обеспечить выход монокристаллов со значительно меньшей плотностью дислокаций, снизить риск двойникования и поликристаллизации слитка во время процесса выращивания и уменьшить среднее время рабочего цикла ростовой установки. Способ заключается в сборе большей части всех имеющихся на поверхности расплава и ниже уровня расплава в зоне его примыкания к тиглю окисных пленок путем их налипания на предварительно выращиваемый кристалл. Результат эффективной очистки расплава достигается тем, что путем регулирования скорости вращения тигля, кристалла, положения тигля в тепловом узле, а также расхода рабочего газа (аргона) достигается максимально высокая концентрация шлаков на поверхности расплава в зоне роста кристалла, что способствует их извлечению на предварительно выращиваемый кристалл. Предварительно выращиваемый кристалл подвергают 2-5 циклам резкого вытягивания с отрывом предварительного кристалла от расплава и затем его последующего полного погружения в расплав, что обеспечивает отделение шлаковых загрязнений от тигля ниже уровня расплава с последующим всплыванием их на поверхность расплава. Последующее вытягивание вверх предварительного кристалла в каждом из циклов обеспечивает сбор окисных пленок с поверхности расплава на кристаллизуемую поверхность слитка. 1 з.п. ф-лы, 2 пр.

Изобретение относится к технологии выращивания профилированных монокристаллов германия из расплава, применяемых в качестве материала для детекторов ионизирующих излучений, для изготовления элементов оптических и акустооптических устройств ИК-диапазона – линз и защитных окон объективов тепловизионных приборов, лазеров на окиси углерода, а также для изготовления подложек фотоэлектрических преобразователей. Способ включает установку в тигель вертикального формообразователя с отверстиями в месте примыкания его нижней части к тиглю для удаления образующегося при кристаллизации избыточного расплава, размещение в проточках вертикального формообразователя горизонтальных формообразующих элементов выпукло-вогнутой формы, загрузку исходной шихты в вертикальный формообразователь, ее нагрев с образованием расплава, погружение затравочного кристалла в расплав, разращивание кристалла путем снижения температуры при одновременном вытягивании, остановку вертикального вытягивания кристалла и дальнейшее разращивание кристалла до полной кристаллизации расплава, при этом увеличение кристалла по радиусу от момента остановки вытягивания до полной кристаллизации расплава проводят путем общего понижения температуры, одновременно осуществляя, с периодом 20 минут, подплавления и разращивания кристалла, вызываемые повышением и понижением температуры с амплитудой ±3°С. Такой режим роста приводит к уменьшению концентраций основных дефектов структуры и связанных с ними оптических неоднородностей и физически эквивалентен дополнительному отжигу во время формирования кристалла. Тем самым решается технический результат, заключающийся в повышении структурного и оптического качества крупногабаритных монокристаллов в форме заготовки, в максимальной степени близкой к форме изготавливаемых линз и других элементов оптических, акустооптических и фотоэлектрических устройств на основе германия. 3 ил., 2 пр.

Изобретение относится к технологии получения монокристаллов парателлурита из расплава методом Чохральского. Выращивание осуществляют из неподвижного тигля с программированием скоростей вытягивания и вращения затравки, при этом после выхода на требуемый диаметр вытягивание цилиндрической части проводят при скоростях вращения, значения которых соответствуют числам Рейнольдса 100-150. В указанном режиме на поверхности расплава образуется система двух обращающихся вокруг кристалла диаметрально противоположных конвективных ячеек переохлажденного расплава более темного цвета, чем остальная поверхность. Далее с периодом 600-800 с применяют реверсивное изменение направления вращения затравки с кристаллом на противоположное в течение всего времени вытягивания. Равномерное уменьшение скорости вращения, переключение направления вращения, также как и равномерное увеличение скорости вращения до прежнего абсолютного значения, осуществляют за время 200-240 с. Реверсивное вращение приводит к периодическому разрушению застойной области расплава под центральной - приосевой частью поверхности растущего кристалла, что обеспечивает более равномерное распределение примесей и других структурных дефектов по радиусу кристалла. Изобретение позволяет улучшить структурное совершенство и однородность монокристаллов парателлурита и изготавливаемых из них элементов оптических и акустооптических устройств. 2 ил., 2 пр.

Изобретение относится к области методов выявления структурных дефектов кристаллов и может быть использовано для исследования дислокационной структуры и контроля качества кристаллов германия. Способ определения плотности дислокаций в монокристаллах германия методом профилометрии включает исследование поверхности образца кристалла германия, обработанного в селективном травителе, и наблюдение фигур травления с помощью интерференционного профилометра. Причем при сканировании и получении 3D профиля поверхности данные области подвергаются профилометрическому анализу, а при получении локальных 2D профилей производится оценка и подсчет минимумов, которые являются дном ямок травления в местах выхода дислокаций и на основе профилей 3D и 2D делается вывод об отнесении/не отнесении ямок к дислокационным ямкам. Техническим результатом является повышение точности и информативности подсчета плотности дислокаций. 4 ил.

Изобретение относится к технологии получения монокристаллов из расплава способом Чохральского. Выращивание кристалла радиусом r сначала осуществляют способом Чохральского путем вытягивания из неподвижного тигля радиусом R1, таким, что где ρтв - плотность кристалла, ρж - плотность расплава. Готовый кристалл отрывают от расплава и охлаждают до комнатной температуры в ростовой камере. Затем открывают ростовую камеру, извлекают из нагревателя тигель и заменяют на тигель меньшего радиуса R2, такого, что после чего закрывают камеру, поднимают температуру до температуры плавления, опускают кристалл до соприкосновения с расплавом и вновь выращивают кристалл путем его постоянного перемещения вниз. Техническим результатом является улучшение структурного совершенства выращиваемых кристаллов за счет снижения в них остаточных механических напряжений и уменьшения плотности дислокаций. 6 ил., 2 пр.

Изобретение относится к технологии получения оптических изделий из германия путем выращивания монокристаллов германия из расплава в форме профильных изделий в виде выпукло-вогнутых заготовок, которые после обработки могут быть использованы для изготовления линз инфракрасного диапазона. Выращивание монокристаллов германия осуществляют на затравочный кристалл с использованием помещенного в тигель 2 вертикального формообразующего элемента 1, имеющего отверстия 6 в месте примыкания его нижней части к тиглю 2 для удаления образующегося при кристаллизации германия избыточного расплава, при этом в проточках вертикального формообразующего элемента 1 диаметром d размещены горизонтальные верхний и нижний формообразующие, имеющие центральные отверстия, элементы 3 выпукло-вогнутой формы с диаметрами, соответственно, d1 и d2, при этом d2>d1>d. Формообразователи придают выращенному монокристаллу форму заготовки линзы. Изобретение позволяет серийно получать монокристаллы германия (в том числе крупногабаритные) с различной формой сечения с минимизированным расходом материала. 1 ил., 2 пр.

Изобретение относится к пьезотехнике, а именно к области создания многослойных пьезокерамических элементов для преобразователей электрической энергии в механическую. Сущность: способ включает приготовление шликера с порошком пьезокерамики, литье шликера через фильеру на движущуюся ленту и получение «сырых» пленок из органической связки с порошком пьезокерамики, резку сплошных «сырых» пленок на групповые заготовки, покрытие определенной части каждой групповой заготовки через сеткотрафарет пастой с порошком металла, сборку групповых заготовок в n-слойные пакеты, гидростатическое прессование собранных пакетов, рубку групповых n-слойных пакетов в соответствии с рисунком сеткотрафарета на отдельные n-слойные заготовки, удаление связки и спекание заготовок в монолит, металлизацию у монолитных заготовок боковых поверхностей, поляризацию монолитных заготовок, измерение параметров полученных монолитных многослойных (n-слойных) пьезокерамических элементов. Перед сборкой групповых заготовок в пакеты групповые заготовки подсушивают и участки каждой групповой заготовки, непокрытые пастой с порошком металла, покрывают через второй сеткотрафарет пастой с порошком пьезокерамики. При этом толщина слоя пасты с порошком керамики одинакова с толщиной слоя пасты с порошком металла. Технический результат: улучшение технологических и эксплуатационных характеристик изделий за счет повышения плоскостности внутренних электродов. 1 табл., 3 ил.
Изобретение относится к способам выращивания ориентированных поликристаллов кремния из расплавов методами направленной кристаллизации и рассчитано на получение материала для изготовления пластин для фотоэлектропреобразователей (солнечных батарей) из металлургического кремния. Поликристаллы кремния производятся в вертикальной установке, обеспечивающей необходимый градиент температур, двумя циклами направленной кристаллизации с добавлением на втором цикле для получения кремния p-типа за счет лигатуры кремний - бор или сильно легированного галлием германия, а для получения кремния n-типа - лигатуры в виде сильно легированного мышьяком германия. Предлагаемый способ позволяет получать значительную экономию за счет использования дешевого исходного сырья - металлургического чернового кремния. 3 пр.

Изобретение относится к технологии выращивания монокристаллов германия из расплава в форме диска и может быть использовано для изготовления объективов в устройствах обнаружения инфракрасного излучения. До начала процесса выращивания расплав германия выдерживают в тигле при температуре плавления в течение 1-2 ч. Затем осуществляют выращивание монокристаллов германия в кристаллографических направлениях [111] или [100] при переохлаждении на фронте кристаллизации в пределах 0,5-1,0 К, скорости радиального разращивания не более 0,5 мм/мин и температурном градиенте у фронта кристаллизации в пределах 3,0÷10,0 К/см. Изобретение позволяет получать монокристаллы германия с минимальным рассеянием принимаемого инфракрасного излучения не более 1,0-2,0% от мощности принимаемого сигнала.
Изобретение относится к технологии выращивания монокристаллов германия из расплава методом Чохральского для изготовления оптических и акустооптических элементов инфракрасного диапазона длин волн, применяемых в качестве материала для детекторов ионизирующих излучений и для изготовления подложек фотоэлектрических преобразователей. В процессе вытягивания линейное перемещение кристалла ведут со скоростями 0,6-0,9 мм/мин в циклическом режиме, при этом вытягивают монокристалл из расплава вверх, затем опускают монокристалл в расплав. Соотношение линейного перемещения вверх - вниз составляет 2:1. Величину абсолютного перемещения вверх h за один цикл рассчитывают согласно математической формуле отношений диаметра тигля к диаметру кристалла в мм: h меньше или равно 1,5Dтигля/Dкристалла. Способ позволяет получать кристаллы германия с низкой плотностью дислокаций - до 250 см-2. 4 пр.

Изобретение относится к пьезоэлектронике. Сущность: рабочее тело высоковольтного генератора представляет собой инерционную массу и пакет из пластин поляризованных композиционных сегнетоэлектрических материалов с высокими значениями пьезоэлектрического коэффициента напряжения и заданной для каждой пластины прочностью на сжатие. Расстояния между нанесенными на пластины токопроводящими поверхностями устанавливают такими, чтобы их значения, умноженные на значения механического напряжения и пьезоэлектрического коэффициента напряжения, были одинаковы для каждой пластины в пакете. Способ включает изготовление каждой партии пластин поляризованных композиционных сегнетоэлектрических материалов последовательным выполнением следующих операций: приготовление пресс-порошка синтезированного материала, приготовление смеси пресс-порошка синтезированного материала и порообразователя, прессование из смеси заготовок и их высокотемпературную обработку методом спекания, механическую обработку, металлизацию, поляризацию и измерение параметров. Заданная прочность на сжатие для каждой партии пластин достигается варьированием пористости за счет изменения концентрации порообразователя в пластине. Технический результат: преобразование механического напряжения сжатия в электрическую энергию без взрывчатого вещества, уменьшение времени образования и увеличение возникающего электрического заряда в единице объема рабочего тела при высоких значениях разности потенциалов. 2 н.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области измерения оптических характеристик материалов, определяющих световые потери в них, связанные как с поглощением, так и рассеянием. Способ состоит в том, что измерения коэффициента пропускания света производят для двух образцов с различной толщиной, изготовленных из одного и того же исследуемого материала. Измеренные значения коэффициентов пропускания, данные о толщинах и диаметрах образцов, значение показателя преломления и определенная экспериментально индикатриса рассеяния (зависимость интенсивности рассеяния от угла рассеяния) используются для расчета вероятностей поглощения и рассеяния фотонов на единицу пути с помощью математического моделирования. При моделировании для обоих образцов находятся зависимости вероятностей рассеяния фотонов от вероятностей поглощения, которые дают измеренные экспериментально коэффициенты пропускания. Поскольку оба образца с разными толщинами вдоль луча изготовлены из одного и того же материала, обе модельные зависимости должны пересекаться в точке, в которой обе вероятности не равны нулю, а значения вероятностей в этой точке должны являться истинными вероятностями поглощения и рассеяния фотонов на единицу пути в исследуемом материале, одинаковыми для обоих образцов. Изобретение позволяет с максимально возможной точностью определять вероятности поглощения и рассеяния фотонов, что позволяет правильно производить классификацию и сертификацию партий материалов, а также подбор материала с необходимыми поглощающими и рассеивающими свойствами с целью повышения воспроизводимости характеристик соответствующих оптических, оптоэлектронных и лазерных устройств. 9 ил.

Изобретение относится к пьезоэлектрическим датчикам и может быть использовано, в частности, в системах диагностики автомобиля и системах автосигнализации. Сущность: датчик включает пьезоэлектрическое рабочее тело и систему регистрации. Рабочее тело выполнено из пьезокерамики связностью 3-0 с максимальным значением коэффициента напряжения g 33 . При этом датчик дополнительно содержит пьезоэлемент-резонатор для тарировки, поверхность которого соединена с поверхностью рабочего тела. Технический результат: повышение пьезочувствительности при минимальном весе, возможность тарировки и проверки работоспособности датчика в условиях отсутствия гравитации. 3 з.п. ф-лы, 3 ил., 1 табл.

Использование: для определения скорости потока газовой среды. Сущность изобретения заключается в том, что осуществляют генерирование ультразвуковых колебаний, прием ультразвуковых колебаний электроакустическими преобразователями, измерение разности фаз электрических колебаний между сигналами от электроакустических преобразователей и вычисление скорости потока по разности фаз, при этом в зависимости от управляющего напряжения, посредством коммутатора на вход измерителя разности фаз подаются сигналы от электроакустических преобразователей 1, 2, 3, из которых электроакустические преобразователи 1, 2 расположены на концах измерительного канала, а преобразователь 3 - на расстоянии одной длины волны распространения ультразвука в воздухе; при нулевом управляющем напряжении обрабатывается сигнал с преобразователей 2 и 3 и запоминаются результаты измерения скорости звука; когда управляющее напряжение принимает значение единицы, через коммутатор проходят сигналы от преобразователей 1 и 2, а на выходе запоминающего устройства выдается запомненный результат измерения электрических сигналов, полученных на выходах преобразователей 2 и 3, и текущее значение разности фаз, полученное на выходе преобразователей 1 и 2; вычислительное устройство рассчитывает мгновенное значение скорости потока газовой среды. Технический результат: обеспечение возможности повышения быстродействия определения скорости потока газовой среды и обеспечение возможности представления результатов в режиме реального времени. 2 н.п. ф-лы, 2 ил.

Изобретение относится к технологии выращивания монокристаллов германия из расплава, применяемых для изготовления оптических деталей (линзы, защитные окна) инфракрасной техники

Изобретение относится к пьезоэлектронике

Изобретение относится к технологии получения монокристаллов парателлурита из расплава методом Чохральского

Изобретение относится к технологии получения монокристаллов германия

 


Наверх