Патенты автора Никольский Сергей Григорьевич (RU)

Устройство относится к теплоэнергетике, в частности, к водородной энергетике, и может быть использовано для получения тепловой энергии из воды в дополнение к тепловой энергии углеводородного топлива. Пароплазменное горелочное устройство с внутрицикловой газификацией топлива содержит огневую камеру, выполненную в виде линейной цепи сопел Лаваля, в которой выход предыдущего сопла соединен со входом последующего сопла цепи так, что геометрические размеры последующего сопла цепи превышают геометрические размеры предыдущего. На торце первого сопла установлена форсунка, имеющая канал для подачи в него перегретого пара, канал для подачи углеводородного топлива и возвратный канал, а в зоне критического сечения первого сопла Лаваля соосно с ним установлен плазменный электрод, электрически подсоединенный к источнику плазмообразующего электрического тока и изолированный электрически от первого сопла Лаваля и корпуса, охватывающего линейную цепь сопел Лаваля, при этом огневая камера снабжена воздушным каналом для подачи в нее воздуха и каналом возврата плазмы из огневой камеры в возвратный канал форсунки. Технический результат - повышение надежности горелочного устройства за счет устранения износа электродов и повышение его эффективности за счет обеспечения предельно возможной полноты сгорания углеводородной компоненты. 1 ил.

Изобретение относится к устройствам преобразования электрической энергии в тепловую и для создания теплообмена, в частности к прямоточным электрическим парогенераторам. В электрическом пароперегревателе, включающем плоский ферромагнитный сердечник со стержнями, предназначенными для создания замкнутого магнитного поля в них, первичные обмотки, расположенные в виде катушек на стержнях и электрически изолированные от них, трубчатую вторичную обмотку, имеющую подводящий и отводящий патрубки и расположенную в магнитном поле изолированно и охватывающую все стержни ферромагнитного сердечника так, что вокруг каждого стержня образует один или несколько замкнутых витков, трубчатая вторичная обмотка состоит из внутренней рабочей трубы и выполнена многослойной из металлов так, что начиная с внутренней рабочей трубы каждый последующий слой полностью охватывает предыдущий, а по поверхности соприкосновения металлов внутренней рабочей трубы и каждого слоя обеспечено частичное взаимное растворение пограничных металлов. Изобретение обеспечивает повышение эксплуатационной надежности для производства пара высокой температуры и высокого давления на основе индукционной технологии, а также расширение области применения данного устройства. 5 з.п. ф-лы, 3 ил.

Изобретение относится к методам определения морозостойкости пористых материалов. Сущность: изготавливают несколько образцов материала, насыщают их водой, термоциклируют, замораживая и размораживая до нормативных температур, определяют деформации образцов после размораживания, пределы прочности образцов в условиях одноосного сжатия и перпендикулярные ему остаточные деформации, находят отношение относительного снижения предела прочности к относительной остаточной деформации и рассчитывают морозостойкость каждого образца, морозостойкость же материала рассчитывают как среднее морозостойкостей образцов. После термоциклирования каждый образец нагружают в условиях одноосного сжатия с заданным темпом до экстремальной нагрузки, отвечающей пределу кратковременной прочности в условиях одноосного сжатия, разгружают образец, определяют относительную остаточную деформацию в направлении, перпендикулярном сжатию, повторяют нагружение в условиях сжатия до значения экстремальной нагрузки второго нагружения, а относительное снижение предела прочности определяют с учетом значений эктремальных нагрузок при первом и втором нагружении. Технический результат: расширение арсенала технических средств ускоренного определения марки бетона по морозостойкости. 1 табл., 2 ил.

Способ относится к методам испытаний пористых водонасыщенных тел. Он предусматривает изготовление серии бетонных образцов, насыщение образцов водой, измерение образцов, определение начального их объема, их замораживание-размораживание до нормативных температур и регистрацию при этом деформации. Дополнительно определяют предел длительной прочности каждого образца неразрушающим методом в условиях растяжения. После размораживания определяют относительную остаточную деформацию образцов и определяют энергию, рассеянную в единице объема каждого образца в процессе его замораживания-размораживания. Далее нагружают их в условиях одноосного сжатия до экстремальной нагрузки, отвечающей кратковременному пределу прочности, определяют энергию, рассеянную в единице объема образца в процессе его сжатия до экстремальной нагрузки, и по полученным результатам рассчитывают марку по морозостойкости каждого образца. Марку бетона по морозостойкости определяют как среднеарифметическое для марок образцов. Технический результат −повышение оперативности, уменьшение трудоемкости и расширение арсенала технических средств. 1 табл.

Использование: для контроля прочности железобетонного изделия в условиях чистого изгиба. Сущность: заключается в том, что изделие циклически нагружают от нуля с постепенно возрастающей амплитудой до появления сигналов акустической эмиссии перед окончанием разгружения, и по среднему для максимальных нагрузок двух последних циклов судят о максимальной неразрушающей нагрузке изделия, причем при появлении сигналов акустической эмиссии перед окончанием разгружения определяют координаты ее источника (дефекта), амплитуды и нагрузки возникновения этих сигналов, после чего продолжают циклическое нагружение с повышением амплитуды, после каждого разгружения определяют координаты новых источников сигналов акустической эмиссии, амплитуды и нагрузки возникновения сигналов, контролируют изменение амплитуды и нагрузки возникновения сигналов для каждого источника от цикла к циклу, а при их возрастании у одного из источников прекращают нагружения. Технический результат: повышение точности определения максимальной неразрушающей нагрузки для изделий в условиях чистого изгиба. 1 ил.

Изобретение относится к способам исследования свойств строительных материалов и предназначено для выбора максимально допустимого: водоцементного отношения по требуемой марке морозостойкости на стадии проектирования бетона

Изобретение относится к неразрушающим методам контроля и предназначено для одновременного определения стойкости против разрушения по максимальной неразрушающей нагрузке L0 , а также против ползучести изделий из относительно хрупких материалов, находящихся в контакте с поверхностно-активными веществами (ПАВ), в частности из бетона, туфа и других пористых строительных материалов, контактирующих с водой

Изобретение относится к неразрушающим методам контроля прочности бетонных изделий и ее изменения во времени под действием окружающей среды, например воды

Изобретение относится к способам оценки длительной прочности неразрушающим методом

Изобретение относится к методам механических испытаний и может быть использовано для ускоренной оценки длительной прочности неразрушающим методом, например, с помощью акустической эмиссии - АЭ

Изобретение относится к методам неразрушающего контроля прочности и предназначено для оценки остаточного ресурса стального железнодорожного ригеля, который из-за периодического прохождения поездов и частичной разгрузки их бугелями токопровода работает в условиях статического или циклического знакопостоянного нагружения

Изобретение относится к способам испытаний материалов и элементов конструкций, а точнее к способам определения долговечности конкретного изделия при стационарном нагружении

Изобретение относится к неразрушающему контролю и может быть использовано для количественной оценки прочности и долговечности керамических изделий, например керамических электронагревателей

Изобретение относится к неразрушающему акустоэмиссионному (АЭ) контролю и может быть использовано для разбраковки изделий из хрупких материалов

 


Наверх