Патенты автора Сокольский Михаил Наумович (RU)

Автоколлиматор содержит отражающий элемент, установленный на объект контроля, фотоэлектрический автоколлиматор, содержащий источник излучения, светоделительную пластину, объектив, матричный фотоприемник (МФП), на который проектируются три изображения установленной в фокальной плоскости объектива круглой диафрагмы, получаемые после отражения от отражающего элемента светового пучка, и блок управления с вычислительным устройством, входы которого связаны с выходами МФП. Отражающий элемент состоит из зеркала и прямоугольной призмы, ребро двугранного угла которой перпендикулярно нормали к отражающей поверхности зеркала. Световой пучок из автоколлиматора разделяется светоделительным кубиком на два пучка, направленные к зеркалу и к прямоугольной призме. Светоделительный кубик установлен на поплавке, сохраняющем положение нормали к светоделительной грани кубика в горизонтальной плоскости. Блок управления с вычислительным устройством с помощью шторок, установленных перед зеркалом и прямоугольной призмой, обеспечивает попеременное попадание отраженных от зеркала и прямоугольной призмы световых пучков в объектив. Технический результат - повышение коэффициента передачи по углу скручивания и обеспечение углового контроля положения объекта при его перемещении вдоль оптической оси автоколлиматора без перенастройки схемы контроля. 3 ил.

Изобретение может быть использовано для головок самонаведения, оптико-электронных систем обнаружения, распознавания и автосопровождения, в частности, в составе бортовой аппаратуры, работающей в нескольких спектральных диапазонах. Система содержит первый канал и второй канал, соосный первому и установленный перед ним. Первый канал содержит главное зеркало, вторичное зеркало (ВЗ), отражающее спектральное излучение Δλ1=8-12,5, линзовый компенсатор аберраций (ЛКА) и фотоприемник излучения спектрального диапазона Δλ1. Второй канал содержит главное зеркало, ВЗ, пропускающее спектральное излучение Δλ2=0,4-0,7 мкм, ЛКА, установленный в зоне центрального экранирования первого канала, и фотоприемник излучения спектрального диапазона Δλ2. Cпектроделительное покрытие нанесено на выпуклую поверхность ВЗ. ЛКА обоих каналов выполнены с положительным линейным увеличением β: 0.8<β<1.2. Технический результат - повышение качества изображения, увеличение светосилы второго канала до светосилы первого канала, обеспечение атермальности обоих каналов, упрощение конструкции и уменьшение габаритно-массовых характеристик. 4 з.п. ф-лы, 1 ил., 1 прилож.

Нашлемная широкоугольная коллиматорная дисплейная оптическая система содержит проектор, включающий в себя жидкокристаллический дисплей, линзовую проекционную систему, состоящую из трех компонентов, двухзеркальный компонент и светоделительное коллимирующее вогнутое зеркало, соединяющее изображения от внешнего пространства и от жидкокристаллического дисплея. Линзовая проекционная система выполнена с телецетрическим ходом главных лучей в пространстве жидкокристаллического дисплея. При этом ее первый компонент содержит двояковыпуклую линзу и положительный мениск, второй компонент выполнен из положительного гиперболического мениска и отрицательной гиперболической двояковогнутой линзы. Третий компонент выполнен из положительного мениска и двояковыпуклой линзы. Технический результата заключается в упрощении конструкции защитного стекла нашлемной системы, обеспечении телецентрического хода главных лучей в пространстве жидкокристаллического дисплея, увеличении яркости за счет освещения жидкокристаллического дисплея отраженными поляризационными лучами, нормальными к поверхности дисплея, и обеспечении высокого качества по всему полю при диаметре входного зрачка не менее 14 мм. 1 з.п. ф-лы, 3 ил.

Оптическая система проекционного бортового индикатора содержит сферическое светоделительное зеркало (комбинер). Также система содержит вторичное зеркало, выполненное в виде клина и со сферической отражающей и преломляющей поверхностями, линзовую проекционную оптическую систему, выполненную из трех компонентов. Перед первым компонентом линзовой проекционной оптической системы установлена поляризационная плоскопараллельная пластинка, а третий компонент содержит положительной гиперболической менисковую линзу, которая установлена между дисплеем и эллиптической менисковой линзой с эквивалентной оптической силой φ3 компонента. При этом второй компонент смещен с оптической оси и наклонен по часовой стрелке вокруг первой поверхности. Технический результат заключается в увеличении выходного зрачка и устранении солнечных бликов. 1 ил.

Изобретение может быть использовано в объективах микроскопов для наблюдения и фотографирования малоконтрастных микроскопических структур. Микрообъектив содержит последовательно расположенные пять компонентов. Первый компонент - мениск, второй и третий склеены из двух линз, четвертый содержит положительную линзу и пятый включает двояковогнутую линзу. Мениск первого компонента обращен вогнутостью к пространству изображения и склеен с двояковыпуклой линзой. Второй компонент склеен из отрицательного мениска, обращенного вогнутостью к пространству изображения, и двояковыпуклой линзы. Третий компонент склеен из двояковыпуклой линзы и отрицательного мениска, обращенного вогнутостью к пространству предметов. В четвертом компоненте положительная линза склеена из положительного мениска, обращенного вогнутостью к пространству изображения, и двояковыпуклой линзы. В пятом компоненте двояковогнутая линза склеена с положительным мениском, обращенным вогнутостью к пространству изображения. Технический результат - увеличение рабочего расстояния при сохранении планапохроматической коррекции и исправленном хроматизме увеличения. 1 з.п. ф-лы, 1 ил., 1 табл., 1 прилож.

Использование: в области оптического приборостроения, в частности в оптических системах авиационных тренажеров, и также для улучшения их технических характеристик. Задача: уменьшение габаритов оптического коллимационного устройства и улучшение качества изображения за счет уменьшения размеров пятен рассеяния изображения точечных объектов. Сущность: в оптическом коллимационном устройстве авиационного тренажера, выполненном внеосевым и децентрированным по апертуре, содержащем сегментное сферическое вогнутое зеркало с центром кривизны C1, сегментный сферический экран с центром кривизны d, установленный выпуклостью к сегментному сферическому вогнутому зеркалу, проекторы, точка пересечения оптических осей которых совмещена с центром кривизны C2 сегментного сферического экрана, сегментное сферическое вогнутое зеркало с центром кривизны C1 установлено над сегментным сферическим экраном с центром кривизны С2, оптические оси оптического коллимационного устройства и проекторов расположены в нижней части оптического коллимационного устройства под сегментным сферическим вогнутым зеркалом, при этом расстояние d между центрами кривизны C1 и С2 удовлетворяет условию: 0≤d<0,15(RЗ-RЭ), где RЗ, RЭ - радиусы кривизны сегментного сферического вогнутого зеркала и сегментного сферического экрана. 2 ил., 1 приложение.

Микрообъектив может быть использован в микроскопах для визуального наблюдения, вывода на TV-камеру и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов. Микрообъектив содержит четыре компонента. Первый компонент содержит «n» фронтальных одиночных положительных линз. Второй компонент содержит трехсклеенную линзу, выполненную из двух двояковыпуклых линз с размещенной между ними двояковогнутой линзой, и две двусклеенные положительные линзы, обращенные положительными линзами навстречу друг другу. Третий положительный компонент выполнен двусклеенным из двояковыпуклой и отрицательной линз. Четвертый компонент содержит двусклеенную линзу, состоящую из двояковыпуклой и двояковогнутой линз, и дополнительную линзу. Технический результат - увеличение рабочего расстояния при достижении планапохроматической коррекции. 3 з.п. ф-лы, 1 ил., 1 прил., 2 табл.
Изобретение может быть использовано в микроскопах, а также для визуального наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов. Микрообъектив содержит три компонента. Первый компонент содержит положительную двусклеенную линзу и обращенный вогнутостью в пространство объекта положительный мениск в виде одиночной линзы. Второй компонент состоит из трех положительных линз, первая из которых - одиночная двояковыпуклая линза, вторая склеена из отрицательной и двояковыпуклой линз, третья склеена из двояковыпуклой линзы и отрицательного мениска, обращенного вогнутостью в пространство объекта. Третий компонент содержит два склеенных отрицательных мениска, первый из которых включает в себя положительный и отрицательный мениски, обращенные вогнутостью в пространство изображения, а второй выполнен из положительного и отрицательного менисков, обращенных вогнутостью в пространство объекта. Технический результат - увеличение линейного поля изображения, улучшение аберраций по полю изображения и устранение хроматизма увеличения. 1 ил., 1 табл.

Изобретение может быть использовано в микроскопах, а также для визуального наблюдения и вывода на TV-камеру малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов. Микрообъектив включает последовательно расположенные три компонента. Первый компонент содержит двусклеенную линзу, состоящую из плосковыпуклой линзы и положительного мениска, обращенного вогнутостью в пространство объекта, и мениск, обращенный вогнутостью в пространство объекта и выполненный в виде одиночной линзы. Второй компонент выполнен в виде трехсклеенной линзы, состоящей из двух двояковыпуклых линз с размещенной между ними двояковогнутой линзой, и двух двусклеенных линз, между которыми помещен положительный мениск, обращенный вогнутостью в пространство изображения. Третий компонент содержит двусклеенный мениск, обращенный вогнутостью в пространство объекта и выполненный из положительного и отрицательного менисков, и размещенный перед ним отрицательный мениск, обращенный вогнутостью в пространство изображения. Технический результат - увеличение входной числовой апертуры, линейного поля изображения, улучшение моно и хроматических аберраций осевого и внеосевых пучков. 1 з.п. ф-лы, 1 ил., 1 прилож., 1 табл.

Изобретение может быть использовано в микроскопах для наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов. Микрообъектив содержит три компонента. Первый компонент содержит положительные двусклеенные линзу и мениск, обращенный вогнутостью в пространство объекта и выполненный из положительного и отрицательного менисков. Второй компонент состоит из трех положительных склеенных линз, первая из которых выполнена из двояковыпуклой линзы и отрицательного мениска, обращенного вогнутостью в пространство объекта, вторая содержит двояковыпуклую и двояковогнутую линзы, а третья склеена из отрицательного мениска, обращенного вогнутостью в пространство изображения, отрицательного мениска, обращенного вогнутостью в пространство объекта, и расположенной между ними двояковыпуклой линзы. Третий компонент содержит два склеенных отрицательных мениска, первый из которых включает двояковыпуклую и двояковогнутую линзы и обращен вогнутостью в пространство изображения, а второй обращен вогнутостью в пространство объекта и выполнен из положительного и отрицательного менисков. Технический результат - увеличение линейного поля изображения и достижение планапохроматической коррекции. 1 з.п. ф-лы, 1 ил., 1 прилож., 1 табл.

Микрообъектив содержит последовательно расположенные пять компонентов. Первый компонент - положительный мениск, обращенный выпуклостью к пространству изображения. Второй - положительная линза, склеенная из двояковыпуклой линзы и положительного мениска, обращенного выпуклостью в пространство изображения. Третий - положительный трехсклеенный компонент, состоящий из двух положительных линз с размещенной между ними двояковогнутой линзой, причем вторая положительная линза выполнена плосковыпуклой, причем плоская поверхность совмещена с промежуточным изображением входного зрачка и обращена в пространство изображения, а за ней дополнительно помещена плосковыпуклая линза, обращенная плоской стороной в пространство объекта. Четвертый компонент - положительная линза, склеенная из отрицательного мениска, обращенного вогнутостью в пространство изображения, и двояковыпуклой линзы. Пятый - отрицательный мениск, обращенный вогнутостью в пространство объекта и склеенный из двояковогнутой и двояковыпуклой линз. Технический результат - увеличение выходной числовой апертуры при сохранении планапохроматической коррекции, исправленном хроматизме увеличения и большом линейном поле изображения. 1 з.п. ф-лы, 1 ил., 1 прил., 1 табл.

Микрообъектив содержит пять компонентов. Первый компонент содержит мениск, обращенный выпуклостью к пространству изображения и склеенный из отрицательного мениска, обращенного выпуклостью к пространству изображения, и размещенной перед ним положительной линзы. Второй состоит из двух положительных линз, первая склеена из положительного и отрицательного менисков, обращенных выпуклостью в пространство изображения, а вторая - из двояковыпуклой линзы и отрицательного мениска, обращенного выпуклостью в пространство изображения. Третий склеен из отрицательного мениска, обращенного вогнутостью в пространство изображения, и двояковыпуклой линзы, и перед ним дополнительно помещена двояковыпуклая линза. Четвертый содержит одиночный положительный мениск, обращенный вогнутостью в пространство изображения, и линзу, склеенную из положительной и отрицательной линз. Пятый компонент включает линзу, склеенную из двух менисков, обращенных вогнутостью в пространство объекта, и перед ней помещен одиночный мениск, обращенный вогнутостью в пространство объекта. Технический результат - увеличение линейного поля изображения и входной числовой апертуры, улучшение моно и хроматических аберраций осевого и внеосевых пучков. 1 з.п. ф-лы, 1 ил., 1 табл., 1 прил.

Объектив выполнен из двух компонентов, разделенных апертурной диафрагмой. Первый компонент с оптической силой φI содержит мениск с оптической силой φI,1, обращенный вогнутой стороной к изображению. Второй компонент с оптической силой φII содержит плосковыпуклую линзу с оптической силой φII,1 и склеенную линзу с оптической силой φII,2. В первый компонент перед апертурной диафрагмой введена плосковыпуклая линза с оптической силой φI,2, а плосковыпуклая линза второго компонента выполнена склеенной. Оптические силы линз и компонентов удовлетворяют следующим условиям: 0.25<|φI/φ|<0.35, 0.48<φII/φ<0.58, 0.3<φI,2/φ<0.4, 0.5<φII,1/φ<0.6, 0.05<φII,2/φ<0.15, где φ оптическая сила объектива в целом. Технический результат - обеспечение хорошего качества изображения во всем интервале изменений рабочего отрезка S=3÷100 мм, уменьшение угла наклона главного луча до значений, меньших ω'=17°, и повышение относительной освещенности на краю поля изображения до 60%. 1 ил., 1 пр.

Телескоп может быть использован в оптико-электронных космических телескопах для дистанционного зондирования Земли. Телескоп содержит объектив, установленные в фокальной плоскости оптико-электронные приемники изображения и спектрометр, содержащий входную щель, установленную в фокальной плоскости объектива, и фокусирующую диспергирующую систему. Спектрометр дополнен второй входной щелью, расположенной параллельно основной щели с высотами Т. Фокусирующая диспергирующая система выполнена в виде n мини-фокусирующих диспергирующих систем, установленных вдоль щелей в шахматном порядке с шагом, равным T 2 n . Каждая мини-фокусирующая диспергирующая система может содержать линзу-коллектив, установленный вблизи щели, и вогнутую дифракционную решетку. Объектив телескопа может быть выполнен из вогнутого главного зеркала, выпуклого вторичного зеркала и предфокального линзового корректора полевых аберраций. Технический результат - увеличение полосы захвата космического телескопа при малых размерах изображений пикселей ОЭПов на поверхности Земли и малых габаритах гиперспектральной аппаратуры. 2 з.п. ф-лы, 2 ил., 2 прил.

Микрообъектив может быть использован для визуального наблюдения в большом поле зрения с большим контрастом изображения. Микрообъектив содержит последовательно расположенные четыре компонента. Первый компонент выполнен в виде одиночной двояковыпуклой линзы. Второй компонент выполнен отрицательным, склеенным из двояковогнутой линзы и отрицательного мениска, обращенного вогнутостью в пространство изображений. Третий компонент выполнен отрицательным, склеенным из двояковогнутой линзы и положительного мениска, обращенного вогнутостью в пространство изображений. Четвертый компонент выполнен в виде одиночного мениска, обращенного вогнутостью в пространство изображений, и линзы, склеенной из двояковыпуклой линзы и мениска, обращенного вогнутостью в пространство объекта. Между вторым и третьим компонентами дополнительно размещена двояковыпуклая линза. Технический результат - высокий контраст изображения по всему наблюдаемому полю зрения за счет планапохроматической коррекции и увеличение наблюдаемого поля зрения. 1 ил., 1 табл., 1 прилож.

Объектив может быть использован в оптико-электронных приборах, в частности, с целью формирования изображения участка звездного неба на ПЗС-матрице, расположенной в фокальной плоскости объектива. Объектив содержит два компонента, разделенные апертурной диафрагмой. Первый компонент состоит из положительного мениска, обращенного вогнутостью к пространству изображения, и склеенного мениска, обращенного вогнутостью к пространству изображения, между которыми дополнительно размещен отрицательный мениск, обращенный вогнутостью к пространству изображения. Склеенный мениск, обращенный вогнутостью к пространству изображения, выполнен положительным, состоящим из двояковыпуклой и двояковогнутой линз. Второй компонент содержит двояковогнутую и две двояковыпуклые линзы. Двояковогнутая и первая двояковыпуклая линзы выполнены склеенными. За второй двояковыпуклой линзой дополнительно помещен отрицательный мениск, обращенный вогнутостью к пространству объекта. Технический результат - увеличение углового и линейного полей зрения и получение дифракционного качества изображения в центре и по полю зрения. 1 з.п. ф-лы, 1 ил., 1 прилож.

Оптическая система содержит вогнутое сферическое светоделительное зеркало с радиусом кривизны R, плоское светоделительное зеркало, установленное наклонно к оптической оси, сферический диффузно-рассеивающий экран, проекционный объектив, жидкокристаллический дисплей и конденсор. Проекционный объектив состоит из двух компонентов и апертурной диафрагмы (AD). Первый компонент - одиночный отрицательный мениск, обращенный выпуклостью к диффузно-рассеивающему экрану с радиусом кривизны R/2. Второй компонент выполнен из отрицательной склеенной линзы и двухлинзового положительного элемента, содержащего двояковогнутую и двояковыпуклую линзы. AD установлена между первым и вторым компонентами в переднем фокусе второго компонента, в который введены положительная склеенная линза, установленная между AD и отрицательной склеенной линзой, и менисковая положительная линза, обращенная вогнутостью к сферическому диффузно-рассеивающему экрану. Оптические силы линз удовлетворяют условиям, приведенным в формуле изобретения. Технический результат - повышение безопасности полета за счет исключения потери информации с дисплея при движении головы пилота как вдоль оптической оси, так и перпендикулярно ей. 1 ил., 1 прилож.

Микрообъектив может быть использован для исследования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности световых микроскопов. Микрообъектив содержит первый компонент I с оптической силой ФI в виде фронтального мениска, обращенного вогнутостью к пространству объекта, и двояковыпуклой положительной линзы, второй компонент II с оптической силой ФII, состоящий из положительной линзы, склеенной из отрицательного мениска, обращенного вогнутостью к пространству изображения, и двояковыпуклой линзы, двояковыпуклой линзы с оптической силой ФII5, склеенной линзы с оптической силой ФII6,7, состоящей из отрицательного мениска, обращенного вогнутостью к пространству изображения, и двояковыпуклой линзы, и двояковогнутой линзы. Третий компонент III с оптической силой ФIII содержит плосковыпуклую линзу и мениск, обращенный вогнутостью к пространству объекта и склеенный из положительного и отрицательного менисков. Соотношение оптических сил линз и объектива в целом и коэффициенты дисперсии материалов линз удовлетворяют условиям, указанным в формуле изобретения. Технический результат - повышение качества изображения в результате исправления кривизны изображения и хроматической разности увеличений при увеличении числовой апертуры и линейного поля зрения. 1 з.п. ф-лы, 1 ил., 1 прилож.

Объектив может быть использован в люминесцентных микроскопах, работающих при больших перепадах температур в проходящем и отраженном свете, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от 250 нм), а наблюдение производится в видимом диапазоне. Объектив содержит три компонента, первый компонент с оптической силой φ1 выполнен в виде двояковыпуклой линзы, второй компонент с оптической силой φ2 выполнен в виде двояковогнутой линзы, а третий компонент с оптической силой φ3 выполнен в виде двояковыпуклой линзы. Первый и третий компоненты выполнены из флюорита, а второй - из кварцевого стекла. Отношения оптических сил компонентов к оптической силе всего объектива φоб удовлетворяют следующим соотношениям: 1.5<φ1/φоб<2; |4|<φ2/φоб<|5|; 2<φ3/φоб<3, а отношения радиусов кривизны имеют следующие значения: в первом компоненте - |1.5|<R11/R12<|2.5|; во втором - |0.3|<R21/R22<|0.7|; в третьем - |0.8|<R31/R32<|1.7|, где R - радиус сферической поверхности, φ=1/f', f' - фокусное расстояние. Технический результат - увеличение рабочего расстояния для обеспечения возможности работать с толстыми кюветами в проходящем свете и с манипуляторами в отраженном, улучшение качества изображения по всему полю зрения и обеспечение допустимо малого коэффициента засветки. 1 ил., 1 пр., 1 табл.

Микрообъектив может быть использован для визуального наблюдения и фотографирования малоконтрастных микроскопических структур, находящихся на пределе разрешающей способности. Микрообъектив содержит последовательно расположенные пять компонентов, первый из которых выполнен в виде мениска, обращенного вогнутостью к пространству предметов. Второй положительный компонент выполнен склеенным из двояковыпуклой линзы и отрицательного мениска, обращенного вогнутостью к пространству предметов, третий двусклеенный компонент выполнен из отрицательного мениска, обращенного вогнутостью к пространству изображений, и двояковыпуклой линзы, а пятый компонент выполнен из одиночной двояковогнутой линзы и двух менисков, обращенных вогнутостью к пространству предметов. Коэффициент дисперсии νd положительных линз второго и третьего компонентов и мениска, расположенного за двояковогнутой линзой в пятом компоненте, νd≥70, а отрицательный мениск склеенной линзы третьего и двояковогнутая линза пятого компонентов имеют коэффициент дисперсии 42≤νd≤48. Технический результат - увеличение рабочего расстояния для обеспечения возможности работы с кюветами и манипуляторами, а также увеличение входной числовой апертуры при сохранении планапохроматической коррекции. 1 табл., 1 ил., 1 прилож.

Изобретение относится к области оптического приборостроения, в частности к космическим телескопам

Изобретение относится к области оптического приборостроения и может быть использовано в тепловизионных приборах, приемники которых чувствительны в инфракрасной (ИК) области спектра, в частности в диапазоне спектра =8-14 мкм

Изобретение относится к кинотехнике, а именно к киносъемочной и фотоаппаратуре

Изобретение относится к кинотехнике, а именно к киносъемочной и фотоаппаратуре

Изобретение относится к оптике, а именно к исследовательским микроскопам

Изобретение относится к оптическому приборостроению, и может быть использовано в оптической промышленности, и, в частности, в астрономических телескопах и особенно в оптико-электронных камерах космических телескопов и т.д

Изобретение относится к области микроскопии

Изобретение относится к области оптико-электронного приборостроения, а более конкретно к способам и устройствам пеленгации источников лазерного излучения, таких как дальномер либо целеуказатель, и может быть использовано в системах самозащиты подвижных объектов военной техники (например, бронетанковой) от управляемого оружия путем постановки оптических либо других помех в направлении угрозы

Изобретение относится к области оптического приборостроения, к оптическим устройствам пеленгации источников лазерного излучения, таких как дальномер либо целеуказатель, и может быть использовано в оптических системах самозащиты подвижных объектов военной техники от управляемого оружия путем постановки оптических либо других помех в направлении угрозы

Изобретение относится к оптическому приборостроению, а именно к объективам микроскопов, и может быть использовано в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции проводится глубоким ультрафиолетом (от 250 нм), а работа проводится в видимом и инфракрасном диапазоне (от 404 до 1000 нм)

Изобретение относится к оптическому приборостроению, а именно к объективам микроскопов, и может использоваться в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от 250 нм), а работа производится в видимом и инфракрасном диапазоне (от 404 до 1000 нм)

Изобретение относится к области оптического приборостроения и может быть использовано в объективах микроскопов, а также в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от 250 нм), а работа производится в видимом и инфракрасном диапазоне (от 404 до 1000 нм)

Изобретение относится к оптическому приборостроению, а именно к объективам микроскопов, и может быть использовано в люминесцентных микроскопах, работающих при больших перепадах температур, в которых возбуждение люминесценции производится глубоким ультрафиолетом (от =250 нм), а наблюдение производится в видимом и инфракрасном диапазоне от 404 до 1000 нм

Изобретение относится к оптическому приборостроению и может быть использовано в оптической промышленности и, в частности, для контроля микродефектов поверхностей
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх