Патенты автора Шавров Владимир Григорьевич (RU)

Изобретение относится к области приборостроения, микросистемной техники и наномеханики, в частности, к технике устройств на основе материалов с эффектом памяти формы (ЭПФ) для манипулирования микро- и нанообъектами и может найти применение в радиоэлектронике, машиностроении, нанотехнологии, электронной микроскопии, медицине, биологии. Цель предполагаемого изобретения: повышение качества и технологичности процесса наноманипулирования, уменьшение погрешности процесса манипулирования, а также снижение потребляемого тока и повышение его быстродействия и производительности в целом. Сущность: система управления устройством с ЭПФ для манипулирования микро- и нанообъектами включает микропроволоку, на ее конце закреплено устройство с ЭПФ для манипулирования микро- и нанообъектами с противоположной стороны от места формирования захвата устройства, а также рабочее поле с манипулируемым объектом и источник подогрева, а основание микропроволоки укреплено в нанопозиционере, и электронную систему питания и управления током, а также два подводящих провода, соединенные с электронной системой питания и управления током, при этом имеется дополнительная микропроволока, конец которой присоединен к устройству с ЭПФ для манипулирования микро- и нанообъектами, а другой конец дополнительной микропроволоки подключен к одному из подводящих проводов, а второй подводящий провод присоединен электрически к основанию первой микропроволоки, при этом обе микропроволоки электрически изолированы и механически прочно закреплены между собой с помощью диэлектрического клея, кроме того дополнительная микропроволока имеет длину меньшую, чем микропроволока, укрепленная в нанопозиционере. 4 з.п. ф-лы, 8 ил.

Изобретение относится к системе управления устройством с ЭПФ для манипулирования микро- и нанообъектами. Система содержит микропроволоку с основанием и концом, выполненным коническим и заточенным путем электрохимического травления, на котором закреплено устройство с ЭПФ для манипулирования микро- и нанообъектами, рабочее поле с манипулируемым объектом и источник подогрева, при этом основание микропроволоки укреплено на нанопозиционере, причем источник подогрева выполнен в виде малоразмерного резистивного нагревающего элемента, расположенного в тепловом контакте с микропроволокой, и электронную систему питания и управления током, протекающим через резистивный элемент, подводящие провода, соединяющие резистивный элемент с электронной системой питания и управления током, причем конец микропроволоки выполнен с переменным профилем в виде комбинации геометрических фигур - усеченного конуса, цилиндра с диаметром меньшим, чем диаметр основания проволоки, и конуса, на острие которого закреплено устройство с ЭПФ для манипулирования микро- и нанообъектами, а нагревательный элемент расположен на поверхности цилиндра с меньшим диаметром. Технический результат заключается в повышении качества и технологичности процесса наноманипулирования за счет минимизации теплового дрейфа устройства манипулирования (нанопинцета) при его термической активации, что приводит к уменьшению погрешности процесса манипулирования, а также снижению потребляемого тока и повышению его быстродействия и производительности в целом. 2 з.п. ф-лы, 3 пр., 12 ил.

Изобретение относится к области измерений термомагнитных свойств материалов и может найти применение при разработке технологии магнитного охлаждения и/или нагрева вблизи комнатной температуры, для применений в промышленности и в быту. Согласно заявленному способу образец и блок приводят предварительно в максимально возможный тепловой контакт. Измерение изменения температуры производят на теплоизолированном в вакууме немагнитном теплопроводящем блоке. Затем по данным измерения изменения температуры теплоизолированного в вакууме немагнитного блока, обусловленного изменением магнитного поля, производят расчет удельного на единицу массы магнетокалорического эффекта образца материала в квазиизотермическом режиме. Заявленный способ реализуется посредством устройства, включающего источник магнитного поля, в котором расположена вакуумная камера, в которой размещена измерительная вставка, содержащая теплоизолированные блок немагнитного теплопроводящего материала и исследуемый образец, а также датчик температуры. Технический результат - повышение точности получаемых данных. 4 н. и 5 з.п. ф-лы, 14 ил.

Изобретение относится к области приборостроения, механики и технике исполнительных элементов на основе функциональных материалов, изменяющих свои форму и размеры под воздействием различных физических полей. Актюатор на основе функционального материала содержит активный элемент, выполненный из функционального материала, механически соединенный с упругим элементом, систему электродов, соединенных с активным элементом, источник электропитания, подсоединенный к системе электродов для контроля актюатора. В качестве функционального материала выбран аморфный металл или сплав. Технический результат заключается в повышении эффективности актюатора, в частности в повышении его быстродействия и выходной механической мощности, а также в повышении надежности и технологичности. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области механики, микросистемной техники и наномеханики, в частности к технике устройств на основе материалов с эффектом памяти формы, и может найти применение в радиоэлектронике, машиностроении, нанотехнологии, электронной микроскопии, медицине

Изобретение относится к композитным функциональным материалам, сохраняющим остаточную деформацию при изгибе после снятия воздействия внешнего поля, в частности материалам с эффектом памяти формы, и может найти применение в машиностроении, приборостроении, радиоэлектронике, микромеханике, в технологии датчиков для испытания технических систем и др

АКТЮАТОР // 2367573
Изобретение относится к устройствам на основе материалов с эффектом памяти формы, а именно к актюаторам, и может найти применение в автомобильной промышленности, машиностроении, робототехнике, микромеханике, медицине

Изобретение относится к области механики, в частности к технике устройств на основе материалов с эффектом памяти формы, и может найти применение в радиоэлектронике, машиностроении, микромеханике, медицине

 


Наверх