Патенты автора Машталяр Дмитрий Валерьевич (RU)

Настоящее изобретение относится к способу получения полимерных пленок, обладающих изменчивой смачиваемостью, основанный на смеси двух полимеров с гидрофобными и гидрофильными свойствами. В качестве сополимеров используют полиэтиленоксид и теломеры тетрафторэтилена, которые растворяют в ацетоне и смешивают в количестве, соответствующем массовому соотношению полиэтиленоксид/теломеры равному 1. Далее полученный полимер наносят на стеклянную подложку толщиной слоя до 0,2 мм. Образовавшуюся пленку сушат от ацетона и активируют ее свойства нагреванием до 130 °С в течение 45 минут с последующим быстрым охлаждением. Технический результат – упрощение способа получения полимерных пленок, обладающих способностью переходить от гидрофобных свойств к гидрофильным и обратно, снижение времени процесса получения. 3 пр.
Изобретение относится к области медицинского материаловедения и касается биорезорбируемых материалов. Предложен способ получения биорезорбируемого композитного материала с низкой скоростью коррозии на основе магния и гидроксиапатита. Способ включает гомогенное смешение порошков магния и гидроксиапатита, искровое плазменное спекание, плазменное электролитическое оксидирование. Порошки магния и гидроксиапатита при смешении дополнительно диспергируют ультразвуком, плазменное электролитическое оксидирование проводят в электролите, содержащем Na2SiO3⋅5H2O - 15 г/л, NaF - 5 г/л, с частотой поляризующих импульсов 300 Гц, сначала в течение 200 с при плотности тока 0,35 А/см2 на анодной составляющей до напряжения 300-350 В, с постоянным напряжением на катодной фазе -30 В, затем в течение 600 с анодную составляющую изменяют до 200 В, а катодную до -10 В. Далее наносят слой поликапролактона либо методом центрифугирования капельно в два этапа на скорости вращения 400 об/мин в течение 50 секунд, затем на скорости 4000 об/мин в течение 60 секунд, либо методом импрегнирования при непрерывном перемешивании смеси в вакууме при 0,7 атм. Технический результат – получение композитного биорезорбируемого материала высокой плотности из магния и гидроксиапатита с равномерным распределением последнего в матрице металла, а также с улучшенной сопротивляемостью растворению в физиологических средах за счет импрегнирования пористой части ПЭО-покрытия поликапролактоном. 1 з.п. ф-лы, 3 пр., 1 табл.

Настоящее изобретение относится к области медицины, а именно к способу получения биорезорбируемого пористого материала на основе магния с покрытием из поликапролактона, включающему смешение порошков магния и порообразователя, холодное прессование, двухстадийную обработку с повышением температуры в вакууме, нанесение раствора поликапролактона и сушку, отличающемуся тем, что порошки магния и порообразователя, где порообразователь выбирают из карбамида, смешивают в планетарной мельнице при скорости вращения 120 об/мин в течение 30 минут, а после прессования обрабатывают шлифовальной бумагой зернистостью 600-1200 с использованием этанола в качестве смазки с последующей обработкой в ультразвуковой ванне в среде этанола в течение 3 минут, а раствор поликапролактона в ацетоне в концентрации 12 мас.% наносят в два этапа методом центрифугирования на поверхность образца сначала на скорости 400 об/мин в течение 50 секунд и затем на скорости 4000 об/мин в течение 60 секунд. Настоящее изобретение обеспечивает получение пористого материала из магния с преимущественно небольшими по размеру порами, а также с улучшенным проникновением полимерного покрытия в поры материала, что обуславливает лучшие коррозионные свойства. 1 табл., 3 ил., 2 пр.

Изобретение относится к области электрохимической энергетики, в частности к получению анодного материала на основе допированной ванадием метастабильной β-фазы диоксида титана для использования в литий- и натрий-ионных аккумуляторах, применяемых для энергообеспечения крупногабаритных энергоустановок гибридного и электрического автотранспорта, систем бесперебойного электроснабжения, робототехнических средств и автономных морских аппаратов и т.п., а также к способу его изготовления. Согласно изобретению наноструктурированный допированный ванадием диоксид титана в кристаллической модификации бронз относится к твердым растворам с формулой Ti1-xVxO2(B), где х=0,02-0,06. Техническим результатом является высокие удельные показатели, улучшенные скоростные характеристики, повышенная устойчивость структуры в процессе циклирования, в том числе в условиях форсированного заряда активного материала анода. 2 н.п. ф-лы, 4 ил., 3 пр.
Изобретение может быть использовано для восстановления эксплуатационных свойств изношенных изделий из титана и титановых сплавов и может быть использовано в различных отраслях промышленности, в том числе: в судостроении, авиационной, космической, автомобильной промышленностях. Способ восстановления покрытий на изделиях из титана и титановых сплавов включает плазменное электролитическое оксидирование детали в электролите, содержащем 20-30 г/л Na3РO4⋅12H2O, и нанесение ультрадисперсного политетрафторэтилена из 15%-ной суспензии в изопропиловом спирте с последующей термообработкой, при этом во время проведения плазменно-электролитического оксидирования напряжение поднимают до 350 В со скоростью 4,38 В/с, а затем стабилизируют потенциостатически при 350 B в течение 920 с. Технический результат: снижение электропотребления процесса, получение покрытий с лучшими характеристиками в отношении коррозионной защиты, повышения твердости, антифрикционных свойств.

Изобретение относится к способу получения материала с композиционным антикоррозионным покрытием для биосовместимых имплантатов с ограниченным сроком нахождения в организме, служащих для замены и/или регенерации поврежденных костных тканей, и может найти применение в имплантационной хирургии. Способ осуществляют методом порошковой лазерной наплавки в защитной газовой среде с применением установки 3D-печати, управляемой с помощью программных средств. Порошок магния превращают в расплав с помощью лазерного луча непосредственно перед нанесением на подложку либо предшествующий слой, при этом наплавку осуществляют послойно, причем каждый слой наносят в несколько проходов лазерного луча с формированием сплошного слоя металлического магния из последовательно наплавленных дорожек. Затем проводят плазменно-электролитическое оксидирование сплавленного материала в биполярном режиме: потенциостатическом при напряжении 370-390 В в ходе анодной поляризации поверхности материала и гальванодинамическом при силе тока, изменяющейся от 11 до 7 А со скоростью развертки минус 0,04 А/с, в ходе катодной поляризации, в электролите, содержащем, г/л: глицерофосфат кальция C3H7CaO6P 20-30, фторид натрия NaF 4-7 и силикат натрия Na2SiO3 7-10, с получением слоя гидроксиапатита Са10(РO4)6(ОН)2. После этого на поверхность полученного слоя наносят ультрадисперсный политетрафторэтилен путем 4-кратного погружения в его 15% суспензию в изопропиловом спирте. После каждого погружения проводят сушку на воздухе и термообработку наносимых слоев УПТФЭ при 310-320°С в течение 10-15 мин. Технический результат - упрощение способа за счет уменьшения числа стадий, снижение трудозатрат и расхода электроэнергии на его осуществление, уменьшение расхода реагентов при одновременном улучшении биосовместимости полученного композитного материала. 2 з.п. ф-лы, 2 табл., 2 ил., 2 пр.

Изобретение относится к получению на поверхности алюминия и его сплавов супергидрофобных покрытий, обладающих влагозащитными и антиобледенительными свойствами, и может быть использовано для обеспечения долговременной защиты от гололедно-изморозевых отложений и сопутствующей коррозии различных конструкций и сооружений. Способ включает обработку поверхности алюминия или его сплава путем электролитического оксидирования в режиме плазменных микроразрядов при переменной поляризации обрабатываемой поверхности с постоянной амплитудной плотности анодного ja и катодного jк токов, равной 0,3-0,5 А/см2, и при частоте поляризующих импульсов 200-300 Гц в течение 3000-3600 с в электролите, содержащем, г/л: КОН 1,5-2,5 и Na2SiO3 15-25. Далее на обработанную поверхность наносят ультрадисперсный политетрафторэтилен усредненного фракционного состава из его дисперсии в изопропиловом спирте путем кратковременного погружения от 1 до 3 раз с сушкой в конвекционном потоке и последующей термообработкой при 340-350°С в течение 10-15 мин после каждого погружения. Технический результат - увеличение адгезии наносимого композиционного полимерсодержащего покрытия, повышение его механической прочности и долговечности. 3 з.п. ф-лы, 6 ил., 3 пр.

Изобретение относится к способу обработки магниевых сплавов, а именно к композиционным покрытиям, формируемым сочетанием плазменного электролитического оксидирования и распыления фторполимера, и может быть применено в машиностроении, в том числе автомобильной промышленности, приборостроении, самолётостроении и производстве космической техники, а также медицине. Способ включает получение защитных композиционных покрытий на сплаве магния, плазменно-электролитическое оксидирование для получения пористого слоя и формирование слоев фторполимера распылением суспензии ультрадисперсного политетрафторэтилена в изопропиловом спирте. Снижается пожароопасность, упрощается процесс. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способам получения защитных антикоррозионных покрытий на изделиях, конструкциях и сооружениях со сварными соединениями, выполненных из сплавов алюминия, преимущественно конструкционных, которые предназначены для эксплуатации в неблагоприятных условиях под воздействием агрессивных сред: при высокой влажности, например, в атмосфере морского тумана, в коррозионно-активных водных растворах. Способ включает проведение электрохимической обработки поверхности сплава при напряжении, обеспечивающем протекание плазменных микроразрядов на границе раздела электрод-электролит, в электролите, содержащем тартрат калия C4H4K2O6⋅0,5H2O и фторид натрия NaF, с последующим нанесением на обработанную поверхность слоя ультрадисперсного политетрафторэтилена УПТФЭ из его суспензии в изопропаноле и термообработкой полученного композиционного покрытия, при этом электрохимическую обработку ведут в гальваностатическом режиме при плотности тока 0,3-0,6 А/см2 в течение 1-3 мин в электролите, который содержит, г/л: тартрат калия C4H4K2O6⋅0,5H2O 10-15 и фторид натрия NaF 0,5-1,0, при этом нанесение слоя УПТФЭ осуществляют путем однократного погружения на 10-20 секунд в дисперсию, содержащую 160,0-200,0 г/л УПТФЭ в изопропаноле с добавкой 6,0-8,0 г/л неионогенного ПАВ с функцией смачивателя. Технический результат - повышение антикоррозионных свойств и долговечности защитных покрытий на сплавах алюминия со сварными швами, получаемых одновременно для всей поверхности, включая поверхность упомянутых швов, за счет минимизации факторов, вызывающих изменение структуры сварного шва и его равнопрочности с материалом основного сплава, при одновременном снижении расходов и энергозатрат на осуществление способа. 1 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к области гальванотехники и может быть использовано в авиа- и автомобилестроении, электротехнике и радиотехнике, компьютерной, космической и оборонной технике. Способ включает плазменно-электролитическое оксидирование (ПЭО) поверхности сплава в силикатно-фторидном электролите в биполярном режиме в два этапа. В течение первых 200-240 с в ходе анодной поляризации поверхности сплава процесс ведут гальваностатически при плотности тока 0,5-0,7 А/см2 до напряжения на аноде 250-270 В, а в ходе катодной поляризации потенциостатически при напряжении на катоде -(30-40) В. Затем в течение 600-700 с оксидирование продолжают при анодном напряжении, уменьшающемся до 200-210 В, и катодном напряжении - до -(8-10) В. На поверхность сформированной подложки наносят слой фторполимера путем окунания в раствор теломеров тетрафторэтилена в ацетоне с последующей сушкой и термообработкой покрытия при 250-275°С в течение не менее одного часа. Операцию нанесения фторполимера повторяют 2-3 раза. Технический результат - повышение технологичности способа при одновременном увеличении срока службы и улучшении коррозионной стойкости, антифрикционных и гидрофобных свойств получаемых покрытий. 2 з.п. ф-лы, 2 ил., 3 табл., 4 пр.

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в пищевой промышленности, в условиях морского климата. Способ включает плазменно-электролитическое оксидирование (ПЭО) металлической поверхности в электролите, содержащем растворимые соли органических и неорганических кислот, с получением слоя оксидной керамики и последующее нанесение политетрафторэтилена (ПТФЭ) с термической обработкой полученного покрытия, при этом ПЭО осуществляют в биполярном режиме, ПТФЭ наносят с помощью электрофореза из его водной дисперсии, дополнительно содержащей додецилсульфат натрия и ОП-10 при следующем содержании компонентов, г/л: ПТФЭ с размером частиц, не превышающим 1 мкм 10-30, додецилсульфат натрия 0,1-2,0, ОП-10 0,1-2,0, а также изопропиловый спирт в количестве 5-100 мл/л и воду - остальное, при напряжении 40-300 В в течение 25-75 с, а термообработку осуществляют при температуре 300-310 °C в течение 10-15 минут. Технический результат - улучшение качества наносимых покрытий, повышение их износо- и коррозионной стойкости при одновременном упрощении способа и расширении круга обрабатываемых металлов. 3 з.п. ф-лы, 6 пр., 2 ил., 1 табл.

Изобретение относится к технологии нанесения защитных покрытий на сплавы магния, изделия из которых находят применение в авиа- и автомобилестроении, электротехнике и радиотехнике, компьютерной, космической и оборонной технике. Способ включает плазменно-электролитическое оксидирование (ПЭО) поверхности сплава в водном электролите, содержащем силикат натрия и фторид натрия, в течение 10-15 мин в биполярном режиме с одинаковой продолжительностью периодов анодной и катодной поляризации, при эффективной плотности тока 0,5-1,0 А/см2 и равномерном увеличении напряжения от 0 до 250-270 В в течение периода анодной поляризации сплава и постоянном значении напряжения - 25-30 В в течение периода его катодной поляризации. Сплав с нанесенным ПЭО-покрытием погружают при комнатной температуре на 100-120 мин в раствор 8-оксихинолина C9H7NO, полученный путем его растворения в воде при нагревании до 90°C с добавлением NaOH до значения pH 12,0-12,5. Полученное покрытие подвергают термической обработке при 140-150°C в течение 100-120 мин. Технический результат - снижение скорости коррозии получаемых защитных покрытий и увеличение срока их службы в атмосфере с высокой влажностью, содержащей хлорид-ионы, за счет способности покрытий к самовосстановлению. 1 з.п. ф-лы, 3 пр.

Изобретение относится к области получения защитных антифрикционных износостойких и обладающих высокой коррозионной стойкостью покрытий на вентильных металлах и их сплавах, преимущественно на титане и его сплавах, алюминии и его сплавах, сплавах магния, и может найти применение для защиты от коррозии деталей и металлоконструкций, работающих в водных коррозионно-активных средах, в атмосфере с высокой влажностью и под воздействием агрессивных ионов. Способ включает электрохимическую обработку поверхности металла, которую осуществляют при напряжениях, обеспечивающих протекание плазменных микроразрядов на границе раздела электрод-электролит при эффективной плотности тока 0,5-1,0 в электролите. Электролит содержит растворимый фосфат, тартрат либо силикат и представляет собой коллоидный раствор при значениях pH 8,0-10,5. Слой политетрафторэтилена (ПТФЭ) наносят из суспензии, содержащей частицы ПТФЭ размером 0,2-0,6 мкм в изопропиловом спирте с добавлением смачивателя ОП-10. Компоненты берут в следующем содержании: ПТФЭ 100,0-150,0; смачиватель ОП-10 6,0-8,0; изопропиловый спирт - остальное. Затем проводят термообработку покрытия. Техническим результатом изобретения является повышение антикоррозионных свойств и износостойкости защитных покрытий на вентильных металлах и сплавах. 3 з.п. ф-лы, 2 ил., 5 пр.

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной аппаратуры, экранированных помещений, защищенных от утечки информации, а также для космической и авиационной техники

Изобретение относится к области гальванотехники и может быть использовано для защиты от гальванокоррозии металлоконструкций из разнородных металлов и сплавов, работающих в водных коррозионно-активных средах

Изобретение относится к оборудованию для электролитической обработки поверхностей металлов и сплавов и может быть использовано для получения оксидных покрытий

Изобретение относится к области гальванотехники и может быть использовано для формирования покрытий в условиях управления кинетикой плазменно-электролитического оксидирования - ПЭО
Изобретение относится к нанесению защитных покрытий на изделия из стали, эксплуатируемые в коррозионно-активных средах, в частности в морской воде

Изобретение относится к исследованию накипеобразования в приближенных к производственным условиях при контролируемых значениях таких параметров как давление и концентрации солей в рабочей жидкости

 


Наверх