Патенты автора Качалина Галина Федоровна (RU)

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для лечения начальной стадии эпиретинального фиброза. Наносят лазерные коагуляты 1 степени на область эпиретинальной мембраны в шахматном порядке по всей площади эпиретинального фиброза при следующих параметрах: длина волны 577 нм, мощность 50 мВт, длительность импульса 0,03-0,05 с, диаметр пятна 100 мкм, расстояние между лазеркоагулятами 150 мкм. Через 7-10 сут проводят субпороговое микроимпульсное лазерное воздействие с нанесением лазерных аппликатов в шахматном порядке по всей поверхности эпиретинального фиброза. Длина волны 577 нм, длительность пакета 30 мс, длительность микроимпульса 50 мкс, скважностью 4,7%, диаметр пятна 100 мкм и мощность 50 мВт. Способ обеспечивает стабилизацию или улучшение максимально коррегированной остроты зрения, стабилизацию или повышение светочувствительности сетчатки за счет стимулирующего действия лазерной энергии, улучшающей трофику интактной сетчатки вокруг участков воздействия. 2 пр.
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для проведения патогенетически обоснованного лазерного лечения клапанных разрывов сетчатки в зависимости от выявленного характера витреоретинального сращения. Проводят офтальмоскопию для выявления разрыва, определения его локализации и формы, а также наличия локальной отслойки сетчатки; ультразвуковое В-сканирование для выявления задней отслойки стекловидного тела (ЗОСТ), определения ее формы и акустической плотности (АП) витреальных тракций в % от АП склеры в интактном участке, принятой за 100%; спектральную оптическую когерентную томографию (СОКТ) для определения количества и фиксации витреальных тракций к разрыву. Если с помощью офтальмоскопии выявляют периферический клапанный ретинальный разрыв с локальной отслойкой сетчатки, по данным ультразвукового В-сканирования выявляют наличие незавершенной ЗОСТ с витреальными тракциями АП более 40%, по данным СОКТ определяют единичные витреальные тракции с фиксацией к ретинальному клапану, то показана барьерная лазеркоагуляция разрыва и через 2-3 недели - ИАГ-лазерный витреолизис витреальных тракций. Если с помощью офтальмоскопии выявляют периферический клапанный ретинальный разрыв с локальной отслойкой сетчатки, а по данным ультразвукового В-сканирования выявляют наличие незавершенной ЗОСТ с витреальными тракциями АП менее 40% и по данным СОКТ определяют единичные витреальные тракции с фиксацией только в области верхушки ретинального клапана, то показана барьерная лазеркоагуляция разрыва и через 2-3 недели - ИАГ-лазерное отсечение верхушки ретинального клапана. Если с помощью офтальмоскопии выявляют периферический клапанный ретинальный разрыв с локальной отслойкой сетчатки, по данным ультразвукового В-сканирования выявляют наличие незавершенной ЗОСТ с витреальными тракциями АП от 10 до 90%, по данным СОКТ определяют множественные витреальные тракции с фиксацией по всей площади клапана, то показана барьерная лазеркоагуляция разрыва и через 2-3 недели - ИАГ-лазерная ретинотомия основания клапана с полным его отсечением. Способ позволяет осущетствить ликвидацию витреальных тракций и устранение тракционного воздействия со стороны стекловидного тела при минимизации объема ИАГ-лазерного вмешательства, что приводит к снижению риска интраоперационных осложнений. 3 пр.
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для наиболее эффективного и безопасного лечения диабетического макулярного отека. Дополнительно к СМЛВ проводят пороговую лазеркоагуляцию с нанесением коагулятов I степени по классификации L′Esperance в шахматном порядке в пределах зоны отека сетчатки, исключая фовеальную аваскулярную зону, непрерывным излучением с длиной волны 577 нм, мощностью 70-100 мВт, длительностью импульса 0,07-0,1 с, диаметром пятна 100 мкм, с расстоянием между лазеркоагулятами 100 мкм, а СМЛВ проводят с нанесением лазерных аппликатов в фовеальной аваскулярной зоне в шахматном порядке с расстоянием между аппликатами 100 мкм излучением с длиной волны 577 нм, длительностью пакета 0,1 с, длительностью микроимпульса 100 мкс, скважностью 5%, диаметром пятна 100 мкм и мощностью 250-600 мВт. Через 1 месяц после лазерного лечения, в случае, если к этому сроку не наблюдается стабилизации патологического процесса (увеличение количества твердых экссудатов и/или увеличение толщины сетчатки по данным ОКТ), проводится дополнительный сеанс СМЛВ с прежними техническими параметрами, с нанесением лазерных аппликатов по всей зоне отека сетчатки. Способ помогает уменьшить толщину сетчатки в макулярной зоне, проницаемость стенки сосудов сетчатки, количество и плотность твердых экссудатов, достичь стабилизации или повышения максимально корригированной остроты зрения. 1 з.п. ф-лы, 2 пр.
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для лечения гемангиомы хориоидеи (ГХ). Выявляют методом ангиографии с флюоресцеином или ангиографии с индоцианином зеленым фокусы новообразованных сосудов ГХ в хориоидальной и в ранней артериальной фазе. Далее диодным лазером с длиной волны 810 нм воздействуют последовательно все выявленные фокусы новообразованных сосудов ГХ, со следующими параметрами: диаметр пятна 1,0-3,0 мм, экспозиция 60 сек, мощность излучения 500-900 мВт; с повторением курса лечения от одного до двух раз, с промежутком между курсами 1,5-2,0 месяца. Способ позволяет восстановить максимально корригируемую остроту зрения у пациента за счет резорбции ГХ с прилеганием отслоенной сетчатки. 2 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при оценке стабильности фиксации у пациентов с амблиопией. Определение стабильности фиксации проводят с помощью аппарата «МР-1» фирмы Nidek technologies. Пациент смотрит на фиксационную метку в виде креста. Аппарат автоматически регистрирует и совмещает фиксационные точки с цифровой фотографией глазного дна пациента. Определяют в процентах число попадания фиксационных точек в зону 2° от фиксационной метки. Вычисляют ширину поля фиксации, выражая ее в градусах путем наложения тангенциальной сетки на цифровую фотографию глазного дна пациента с наложенными на нее фиксационными точками независимо от локализации поля фиксации. При числе попаданий от 70 до 85% фиксационных точек в зону 2° при ширине поля фиксации до 3° включительно зрительную фиксацию оценивают как стабильную. При числе попаданий от 50 до 69% фиксационных точек в зону 2° при ширине поля фиксации от 4 до 5° - как относительно стабильную фиксацию. При числе попаданий фиксационных точек в зону 2° с частотой менее 49% при ширине поля фиксации более 5° - как нестабильную фиксацию. Способ обеспечивает повышение объективности, достоверности и точности диагностики за счет использования аппарата «МР-1» фирмы Nidek technologies, комплексной оценки числа попаданий фиксационных точек в зону 2° и ширины поля фиксации. 3 пр.

Изобретение относится к офтальмологии и может быть использовано при коррекции неправильного смешанного роговичного астигматизма. Воздействуют на роговицу глаза излучением эксимерного лазера с длиной волны 193-222 нм с энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов 30-500 Гц. Формируют регулярную поверхность в оптической зоне и поверхность переходной зоны путем последовательного послойного удаления участков роговицы. Регулярную поверхность оптической зоны (ОЗ) формируют в виде поверхности гиперболического параболоида с отрицательной конической константой от минус 0,1 до минус 0,4 в два этапа. Сначала формируют вогнутую часть поверхности гиперболического параболоида, лежащую в пределах всей ОЗ, путем образования подлежащей удалению центральной зоны (ЦЗ). Центр симметрии ЦЗ совмещают с центром участка максимальной иррегулярности, определяемого на кератотопограмме. Формируют выпуклую часть поверхности гиперболического параболоида путем образования не подлежащей воздействию ЦЗ. Центр симметрии ЦЗ совмещают с центром участка максимальной иррегулярности, определяемого на кератотопограмме, а ось симметрии ЦЗ - со слабой осью астигматизма. Диаметр оптической зоны выбирают в соответствии с диаметром участка максимальной иррегулярности, определяемым по карте высот на кератотопограмме. Поверхность переходной зоны (ППЗ) формируют в виде части выпуклой наружной поверхности кольцевого тороида. Внешний край ППЗ сопряжен с участком роговицы, не подлежащим воздействию. Внутренний край ППЗ сопряжен с внешним краем оптической поверхности. Ширина ППЗ составляет 0,04-0,2 диаметра зоны воздействия. Способ позволяет достичь высоких зрительных функций пациентов при минимизированном объеме удаляемых тканей роговицы и сохранении физиологической конической константы роговицы, при меньшем времени проведения операции с максимально точной центровкой эксимерлазерного воздействия за счет проведения операции в один этап. 17 ил., 3 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при прогнозировании эффективности плеоптического лечения у детей с амблиопией. Определяют светочувствительность сетчатки в 29 точках макулярной области методом микропериметрии под контролем автотреккинга. Если среднее значение светочувствительности в 29 точках составляет более 17 дБ, то прогноз плеоптического лечения амблиопии благоприятный. Если среднее значение светочувствительности составляет от 15,6 дБ до 17 дБ включительно, то прогноз лечения относительно благоприятный. Если среднее значение светочувствительности составляет менее 15,6 дБ, то прогноз лечения неблагоприятный. Способ позволяет точно провести прогноз эффективности плеоптического лечения у детей и подростков, определить сохранность зрительных функций за счет оптимальной методики прогноза, а также обеспечивает получение достоверных данных светочувствительности сетчатки, вне зависимости от стабильности фиксации пациента за счет использования микропериметрии под контролем автотреккинга. 3 пр.
Изобретение относится к медицине, а в частности к офтальмологии, и предназначено для лечения пролиферативной диабетической ретинопатии (ПДР), осложненной гемофтальмом. Способ включает проведение витрэктомии, отслоение и удаление задней гиалоидной мембраны стекловидного тела, эндолазеркоагуляцию сетчатки. После восстановления прозрачности структур витреальной полости проводят флуоресцеиновую ангиографию (ФАГ). Если по данным ФАГ визуализируют гиперфлуоресценцию ближе к сосудистым аркадам и макулярной зоне, то выполняют эндолазеркоагуляцию сетчатки в этой зоне длиной волны 532 нм с длительностью импульса 0,1 с, диаметром пятна 100 мкм, мощностью 70-100 мВт, нанося 100-200 коагулятов. Если визуализируют гиперфлуоресценцию за пределами сосудистых аркад, то выполняют эндолазеркоагуляцию сетчатки в этой зоне длиной волны 532 нм с длительностью импульса 0,2 с, диаметром пятна 200-400 мкм, мощностью 150-250 мВт, нанося 400-500 коагулятов. Способ обеспечивает сокращение количества суммарной энергии лазерного излучения, что позволяет уменьшить осложнения, такие как рецидив гемофтальма, прогрессирование пролиферации, развитие отслойки сетчатки. 4 пр.

Изобретение относится к офтальмологии и может быть использовано при коррекции сложного неправильного гиперметропического роговичного астигматизма. Воздействуют излучением эксимерного лазера с длиной волны 193-222 нм на роговицу глаза. Энергия в импульсе 0,8-2,1 мДж, диаметр лазерного пятна 0,5-1,5 мм, длительность импульса 5-8 нс, частота следования импульсов 30-500 Гц. Формируют регулярную поверхность в оптической зоне и поверхность переходной зоны путем последовательного послойного удаления участков роговицы. Регулярную поверхность оптической зоны (ОЗ) формируют в виде выпуклого эллипсоида вращения с отрицательной конической константой от минус 0,1 до минус 0,4. Оптическую ось эллипсоида смещают таким образом, чтобы центр ОЗ соответствовал положению центра участка максимальной иррегулярности на кератотопограмме. Диаметр ОЗ выбирают в соответствии с диаметром участка максимальной иррегулярности, определяемым по карте высот на кератотопограмме. Формируют поверхность переходной зоны (ППЗ) в виде части выпуклой наружной поверхности (ЧВНП) кольцевого тороида. Внешний край ППЗ сопряжен с участком роговицы, не подлежащим воздействию. Внутренний край ППЗ сопряжен с внешним краем оптической поверхности. Ширина ППЗ составляет 0,04-0,2 диаметра зоны воздействия. Способ обеспечивает снижение иррегулярности поверхности роговицы при сохранении физиологической конической константы роговицы и улучшение зрительных функций пациентов, а также минимизацию объема удаляемых тканей, отсутствие необходимости повторной центровки эксимерного лазера улучшает точность воздействия и уменьшает время проведения операции. 14 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологической хирургии, и может быть использовано при коррекции сложного неправильного миопического роговичного астигматизма. Для этого снимают кератотопограмму. Затем на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов 30-500 Гц. При этом формируют в оптической зоне регулярную поверхность и поверхности переходной зоны путем последовательного послойного удаления участков роговицы. Регулярную поверхность оптической зоны (03) формируют в виде вогнутого эллипсоида вращения с отрицательной конической константой от минус 0,1 до минус 0,4. Оптическую ось эллипсоида смещают таким образом, чтобы центр оптической зоны соответствовал положению центра участка максимальной иррегулярности на кератотопограмме. Диаметр оптической зоны выбирают в соответствии с диаметром участка максимальной иррегулярности, определяемым по карте высот на кератотопограмме. После этого формируют поверхности переходной зоны. Первую поверхность переходной зоны (ППЗ), прилежащую к зоне, не подлежащей воздействию, формируют в виде части выпуклой наружной поверхности (ЧВНП) кольцевого тороида. Внешний край первой ППЗ сопряжен с участком роговицы, не подлежащим воздействию. Ширина ППЗ составляет 0,04-0,2 диаметра зоны воздействия (ЗВ). Вторую ППЗ формируют в виде части вогнутой внутренней поверхности (ЧВВП) кольцевого тороида, прилежащей к оптической зоне. Причем ширина второй ППЗ равна ширине первой ППЗ. Внутренний край второй ППЗ сопряжен с внешним краем оптической поверхности, внешний край - с внутренним краем первой ППЗ. Способ обеспечивает уменьшение времени проведения операции и погрешности при повторной центровке за счет проведения операции в один этап, снижение иррегулярности поверхности роговицы при сохранении физиологической конической константы роговицы и улучшение зрительных функций пациентов, а также минимизацию объема удаляемых тканей. 3 пр., 14 ил.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании с простым гиперметропическим астигматизмом с сохранением асферичности поверхности роговицы. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов 30-500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую эллипсоидальную выпуклую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). При ее формировании образуют зону в виде не подлежащего удалению внутреннего центрального сегмента (ВЦС). ВЦС образуют две параллельные хорды и окружность с диаметром зоны воздействия (ЗВ). Центр симметрии ВЦС совмещают с центром оптической зоны. Ось симметрии ВЦС, лежащую параллельно хордам, совмещают с сильной осью астигматизма. Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с отрицательной конической константой от -0,1 до -0,4. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95 диаметра ОЗ. Далее формируют поверхности переходной зоны (ППЗ). Первую ППЗ формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида. При этом внутренний край второй ППЗ должен быть сопряжен с внешним краем первой оптической поверхности, внешний край - с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, уменьшение светового ореола. 22 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании со сферической гиперметропией. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую сферическую выпуклую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с отрицательной конической константой от -0,1 до -0,4. При этом отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95 диаметра ОЗ. Далее формируют поверхности переходной зоны (ППЗ). Первую ППЗ формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида. При этом вторую ППЗ формируют так, чтобы внутренний ее край был сопряжен с внешним краем первой оптической поверхности. Внешний край второй ППЗ должен быть сопряжен с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, при уменьшении светового ореола. 22 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании со сферической гиперметропией. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую сферическую выпуклую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с отрицательной конической константой от -0,1 до -0,4. При этом отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95 диаметра ОЗ. Далее формируют поверхности переходной зоны (ППЗ). Первую ППЗ формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида. При этом вторую ППЗ формируют так, чтобы внутренний ее край был сопряжен с внешним краем первой оптической поверхности. Внешний край второй ППЗ должен быть сопряжен с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, при уменьшении светового ореола. 22 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании со сложным гиперметропическим астигматизмом. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую эллипсоидальную выпуклую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). При ее формировании размечают не подлежащую удалению центральную эллиптическую зону (ЦЭЗ). Центр симметрии ЦЭЗ совмещают с центром ОЗ. Большую ось ЦЭЗ совмещают с сильной осью астигматизма. Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с отрицательной конической константой от -0,1 до -0,4. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95. Далее формируют поверхности переходной зоны (ППЗ). Первую ППЗ формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. Ширина первой ППЗ составляет от 0,04 до 0,2 диаметра зоны воздействия (ЗВ). При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида шириной от 0,04 до 0,2 диаметра ЗВ. При этом внутренний край второй ППЗ должен быть сопряжен с внешним краем первой оптической поверхности, внешний край - с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции при уменьшении светового ореола. 24 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании с простым миопическим астигматизмом. Для этого на роговицу глаза воздействуют излучением эксимерного лазера в определенном режиме. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую цилиндрическую вогнутую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). При ее формировании размечают подлежащий удалению внутренний центральный сегмент (ВЦС). Центр симметрии ВЦС совмещают с центром ОЗ. Ось симметрии ВЦС совмещают со слабой осью астигматизма. Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с положительной конической константой от +0,75 до +1,5. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95. Далее формируют поверхности переходной зоны (ППЗ) в виде части выпуклой наружной поверхности кольцевого тороида. При этом ППЗ формируют так, чтобы она была сопряжена внутренним краем с внешним краем первой оптической поверхности, а внешним краем - с участком роговицы, не подлежащим воздействию. Ширина ППЗ от 0,04 до 0,2 диаметра зоны воздействия. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, при уменьшении светового ореола. 15 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании со смешанным астигматизмом. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Сначала формируют вогнутую часть поверхности гиперболического параболоида путем образования подлежащей удалению центральной зоны (ЦЗ). При этом указанную часть поверхности параболоида формируют в пределах всей оптической зоны (ОЗ).Центр симметрии ЦЗ совмещают с центром ОЗ. Далее формируют выпуклую часть поверхности гиперболического параболоида путем образования не подлежащей воздействию ЦЗ. Центр симметрии ЦЗ совмещают с центром ОЗ. Ось ЦЗ симметрии совмещают со слабой осью астигматизма. Вторую оптическую поверхность формируют в виде выпуклого эллипсоида вращения с положительной конической константой от +0,75 до +1,5. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95. Далее формируют поверхности переходной зоны. Первую поверхность переходной зоны (ППЗ) формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. Ширина первой ППЗ составляет от 0,04 до 0,2 диаметра зоны воздействия (ЗВ). При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида шириной от 0,04 до 0,2 диаметра ЗВ. Внутренний край второй ППЗ сопряжен с внешним краем первой оптической поверхности, а внешний край - с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции при уменьшении светового ореола. 27 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании со сферической гиперметропией. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую сферическую выпуклую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ) и включают центр ОЗ. Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с положительной конической константой от +0,75 до +1,5. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95. Далее формируют поверхности переходной зоны (ППЗ). Первую ППЗ формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида. При этом вторую ППЗ формируют так, чтобы внутренний ее край был сопряжен с внешним краем первой оптической поверхности. Внешний край второй ППЗ должен быть сопряжен с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, при уменьшении светового ореола. 22 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании со смешанным астигматизмом. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц.. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Сначала формируют первую оптическую поверхность в виде поверхности гиперболического параболоида в два этапа. Сначала формируют вогнутую часть поверхности гиперболического параболоида путем образования подлежащей удалению центральной зоны (ЦЗ). При этом указанную часть поверхности параболоида формируют в пределах всей оптической зоны (ОЗ). Центр симметрии ЦЗ совмещают с центром ОЗ. Далее формируют выпуклую часть поверхности гиперболического параболоида путем образования не подлежащей воздействию ЦЗ. Центр симметрии ЦЗ совмещают с центром ОЗ. Ось симметрии ЦЗ совмещают со слабой осью астигматизма. Вторую оптическую поверхность формируют в виде выпуклого эллипсоида вращения с отрицательной конической константой от -0,1 до -0,4. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ составляет от 0,85 до 0,95. Далее формируют поверхности переходной зоны. Первую поверхность переходной зоны (ППЗ) формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. Ширина первой ППЗ от 0,04 до 0,2 диаметра зоны воздействия (ЗВ). При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида шириной от 0,04 до 0,2 диаметра ЗВ. При этом вторую ППЗ формируют так, чтобы внутренний край второй ППЗ был сопряжен с внешним краем первой оптической поверхности, а внешний край - с внутренним краем первой ППЗ. Способ обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, при уменьшении светового ореола и минимизации сферической аберрации. 27 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании с простым миопическим астигматизмом. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов 30-500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую цилиндрическую вогнутую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). При ее формировании размечают подлежащий удалению внутренний центральный сегмент (ВЦС). Центр симметрии ВЦС совмещают с центром ОЗ. Ось симметрии ВЦС совмещают со слабой осью астигматизма. Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с отрицательной конической константой от -0,1 до -0,4. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95. Далее формируют поверхности переходной зоны (ППЗ) в виде части выпуклой наружной поверхности кольцевого тороида. При этом ППЗ формируют так, чтобы она была сопряжена внутренним краем с внешним краем первой оптической поверхности, а внешним краем - с участком роговицы, не подлежащим воздействию. Ширина ППЗ от 0,04 до 0,2 диаметра зоны воздействия. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, при уменьшении светового ореола. 15 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании с простым гиперметропическим астигматизмом. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую цилиндрическую выпуклую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). При ее формировании образуют зону в виде не подлежащего удалению внутреннего центрального сегмента (ВЦС). ВЦС образуют две параллельные хорды и окружность с диаметром зоны воздействия (ЗВ). Центр симметрии ВЦС совмещают с центром оптической зоны. Ось симметрии ВЦС, лежащую параллельно хордам, совмещают с сильной осью астигматизма. Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с положительной конической константой от +0,75 до +1,5. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95 диаметра ОЗ. Далее формируют поверхности переходной зоны (ППЗ). Первую ППЗ формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. Ширина первой ППЗ составляет от 0,04 до 0,2 диаметра зоны воздействия (ЗВ). При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида шириной от 0,04 до 0,2 диаметра ЗВ. При этом внутренний край второй ППЗ должен быть сопряжен с внешним краем первой оптической поверхности, внешний край - с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции, уменьшение светового ореола. 22 ил., 3 пр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для коррекции пресбиопии в сочетании со сложным гиперметропическим астигматизмом. Для этого на роговицу глаза воздействуют излучением эксимерного лазера с длиной волны 193-222 нм, энергией в импульсе 0,8-2,1 мДж, диаметром лазерного пятна 0,5-1,5 мм, длительностью импульсов 5-8 нс, частотой следования импульсов от 30 до 500 Гц. При таком воздействии, которое обеспечивает последовательное послойное удаление участков роговицы, формируют оптические поверхности и поверхности переходной зоны. Первую эллипсоидальную выпуклую оптическую поверхность формируют в пределах всей оптической зоны роговицы (ОЗ). При ее формировании размечают не подлежащую удалению центральную эллиптическую зону (ЦЭЗ). Центр симметрии ЦЭЗ совмещают с центром ОЗ. Большую ось ЦЭЗ совмещают с сильной осью астигматизма, малую ось ЦЭЗ - со слабой осью астигматизма. Затем формируют вторую оптическую поверхность в виде выпуклого эллипсоида вращения с положительной конической константой от +0,75 до +1,5. При этом оптическая ось второй оптической поверхности совпадает с центром ОЗ. Отношение диаметра второй оптической поверхности к диаметру ОЗ лежит в интервале от 0,85 до 0,95. Далее формируют поверхности переходной зоны (ППЗ). Первую ППЗ формируют в виде части выпуклой наружной поверхности первого кольцевого тороида. Ширина первой ППЗ составляет от 0,04 до 0,2 диаметра зоны воздействия (ЗВ). При этом первую ППЗ формируют так, чтобы внешний ее край был сопряжен с участком роговицы, не подлежащим воздействию. Вторую ППЗ формируют в виде части вогнутой внутренней поверхности второго кольцевого тороида шириной от 0,04 до 0,2 диаметра ЗВ. При этом внутренний край второй ППЗ должен быть сопряжен с внешним краем первой оптической поверхности, внешний край - с внутренним краем первой ППЗ. Способ позволяет минимизировать объем удаляемой ткани глаза, обеспечивает высокие зрительные функции вдаль и вблизи без дополнительной очковой коррекции при уменьшении светового ореола. 24 ил., 3 пр.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для определения дифференцированных показаний к выбору режима лазерного лечения центральной серозной хориоретинопатии

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для определения показаний к выбору метода эксимерлазерной коррекции
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения транссудативной ретинопатии после хирургического удаления эпиретинальной мембраны (ЭРМ)
Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения макулярных друз при возрастной макулодистрофии

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования результатов лечения ИМР
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для лечения центральной серозной хориоретинопатии с локализацией точки фильтрации в аваскулярной зоне сетчатки
Изобретение относится к медицине, в частности к офтальмологии, и предназначено для лечения патологического состояния сетчатки, возникающего при центральной серозной хориоретинопатии с точкой фильтрации, расположенной вблизи от фовеальной аваскулярной зоны (ФАЗ)
Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для лечения незначительных структурно-функциональных нарушений, возникающих после хирургии отслойки сетчатки, путем микроимпульсного воздействия
Изобретение относится к медицине, офтальмологии, и может быть использовано для лечения скрытых субретинальных неоваскулярных мембран
Изобретение относится к области медицины, а именно к офтальмологии

Изобретение относится к области офтальмологии
Изобретение относится к медицине, в частности к офтальмологии, и предназначено для диагностики патологических изменений, вызванных неполной адаптацией нейроэпителиальных слоев сетчатки, после витреоретинальной хирургии отслойки сетчатки

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для оценки функционального эффекта лечения макулярного разрыва
Изобретение относится к медицине, а в частности к офтальмологии, и предназначено для лечения патологических изменений, вызванных неполной адаптацией нейроэпителиальных слоев сетчатки, после витреоретинальной хирургии отслойки сетчатки
Изобретение относится к медицине, а именно к офтальмологии
Изобретение относится к медицине, а точнее к офтальмологии
Изобретение относится к офтальмологии и может быть использовано для определения показаний к проведению персонализированной абляции после коррекции миопии, гиперметропии и астигматизма методом ЛАЗИК

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сложным миопическим астигматизмом

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании с простым миопическим астигматизмом

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сферической миопией

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сложным миопическим астигматизмом

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сферической миопией

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сложным гиперметропическим астигматизмом

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сферической гиперметропией

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со смешанным астигматизмом

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании с простым гиперметропическим астигматизмом

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сферической гиперметропией

Изобретение относится к офтальмологии и может быть использовано при коррекции пресбиопии в сочетании со сложным гиперметропическим астигматизмом
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх