Патенты автора Мельников Сергей Александрович (RU)

Изобретение относится к способу исследования гидромеханических характеристик скважинных фильтров. В испытательную камеру помещают испытываемый фильтр, готовят рабочую жидкость с заданными характеристиками. Задают расход рабочей жидкости, нагнетают рабочую жидкость во внутреннюю полость испытываемого фильтра, обеспечивают циркуляцию рабочей жидкости через испытываемый фильтр. Контролируют характеристики рабочей жидкости и поддерживают их. Измеряют давление рабочей жидкости на входе во внутреннюю полость испытываемого фильтра и на выходе из испытываемого фильтра. Повышают давление рабочей жидкости на входе во внутреннюю полость испытываемого фильтра до резкого повышения давления ее нагнетания, то есть до момента кольматации фильтра. Поддерживают указанное давление. Определяют разность величин давления на входе во внутреннюю полость испытываемого фильтра и на выходе из испытываемого фильтра. Оценивают степень кольматации испытываемого фильтра по разности величин давления на входе во внутреннюю полость испытываемого фильтра и на выходе из испытываемого фильтра. После кольматации фильтра фиксируют конечную разность величин давления на входе во внутреннюю полость испытываемого фильтра и на выходе из испытываемого фильтра. Снижают давление рабочей жидкости на входе во внутреннюю полость испытываемого фильтра. По конечной разности величин давления судят об эффективности работы испытываемого фильтра. Нагнетание рабочей жидкости в испытательную камеру продолжают до повышения давления в испытываемом фильтре до тех пор, пока давление разрыва не достигнет значения, определенного заводом-изготовителем, или пока не будет зафиксирована потеря контроля над фильтрацией песка. Потерю контроля над фильтрацией песка оценивают по резкому падению значения давления. Исследования проводят при установке испытуемой камеры как в горизонтальном, так в вертикальном и наклонном положениях. Технический результат заключается в повышении достоверности результатов проводимых испытаний за счет проведения испытаний в условиях, максимально приближенных к реальным условиям эксплуатации скважинных фильтров. 1 ил., 1 табл.

Изобретение относится к способу исследования гидромеханических характеристик скважинных фильтров. Способ исследования гидромеханических характеристик скважинных фильтров заключается в том, что в испытательную камеру помещают испытываемый фильтр, устанавливают испытательную камеру в требуемом положении, готовят рабочую жидкость с заданными характеристиками. Задают необходимый расход рабочей жидкости, нагнетают рабочую жидкость в испытательную камеру и обеспечивают циркуляцию рабочей жидкости через испытываемый фильтр. Контролируют характеристики рабочей жидкости и поддерживают их на заданном уровне. Измеряют давление рабочей жидкости на входе в испытательную камеру и на выходе из испытываемого фильтра. Повышают давление рабочей жидкости на входе в испытательную камеру до резкого повышения давления нагнетания, то есть до момента кольматации фильтра. Определяют разность величин давления на входе в испытательную камеру и на выходе из испытываемого фильтра. Оценивают степень кольматации испытываемого фильтра по разности величин давления на входе в испытательную камеру и на выходе из испытываемого фильтра. По конечной разности величин давления судят об эффективности работы испытываемого фильтра. Рабочую жидкость продолжают подавать в испытательную камеру до повышения значения давления в испытательной камере до тех пор, пока не будет достигнуто необходимое значение давления смятия или пока не будет зафиксирована потеря контроля над фильтрацией песка. Потерю контроля над фильтрацией песка оценивают по резкому падению значения давления внутри испытательной камеры, фиксируемому на датчике давления. Технический результат заключается в повышении достоверности результатов проводимых испытаний за счет проведения испытаний в условиях, максимально приближенных к реальным условиям эксплуатации скважинных фильтров. 1 табл., 1 ил.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний скважинных фильтров различных типов конструкции, используемых для процессов добычи и хранения углеводородов в нефтегазовой отрасли. Устройство включает испытательную камеру с верхней и нижней крышками на концах, закрывающими соответственно верхний и нижний торцы испытательной камеры, служащие как входом рабочей жидкости, так и выходом отработанной жидкости из испытательной камеры в зависимости от направления движения жидкости, испытываемый фильтр, установленный в испытательной камере, насосный агрегат, емкость для приготовления рабочей жидкости, в верхней части которой установлен электродвигатель с мешалкой на валу, емкость с промывочной жидкостью, емкость для отработанной жидкости, датчики давления, установленные на торцах испытательной камеры, и оборудованные запорной арматурой первый, второй и третий трубопроводы подачи рабочей жидкости, первый, второй и третий трубопроводы отвода рабочей жидкости, первый и второй трубопроводы, выполненные с возможностью подвода в испытательную камеру рабочей жидкости или отвода из испытательной камеры отработанной жидкости, трубопровод подачи промывочной жидкости и первый и второй трубопроводы для слива отработанной жидкости. Обеспечивается расширение функциональных возможностей стенда, которые заключаются в возможности проведения испытаний скважинных фильтров в условиях, характерных как для вертикальных скважин, так и для горизонтальных и наклонно-направленных скважин. 1 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к эксплуатации обводненных газовых или газоконденсатных скважин, и может быть использовано на нефтегазоконденсатных месторождениях при разработке газовых и газоконденсатных залежей на завершающей стадии. Согласно способу осуществляют снабжение скважины основной лифтовой колонной и концентрично размещенной в ней центральной лифтовой колонной с образованием кольцевого пространства между ними, внутри торцевой части центральной лифтовой колонны через каждые 200-250 м от башмака устанавливают диспергаторы в виде кольца с конусообразной поверхностью, при этом высота кольца диспергатора составляет 5-7 мм, ширина - 10-14 мм, а угол между конусной внутренней поверхностью кольца и внутренней поверхностью трубы составляет 130-140°, торец центральной лифтовой колонны размещают ниже торца основной лифтовой колонны, а отбор газа осуществляют одновременно по центральной лифтовой колонне и кольцевому пространству. При этом по центральной лифтовой колонне добывают газожидкостную смесь, отбор газа из нее ведут с дебитом, в полтора раза превышающим дебит, необходимый для выноса жидкости из колонны, а дебит газа по кольцевому пространству задают такой величины, чтобы он не превышал значения рабочего дебита. Газожидкостную смесь центральной лифтовой колонны сепарируют на поверхности с получением газа и жидкости, жидкость утилизируют после извлечения ценных компонентов, а из жидкости газоконденсатных скважин предварительно выделяют конденсат. Технический результат - эффективное удаление жидкости с забоя скважины путем ее подъема на дневную поверхность и эксплуатация обводненных газовых или газоконденсатных скважин на завершающей стадии разработки. 2 ил., 2 табл.

Изобретение относится к производству сплавов для постоянных магнитов, может быть использовано для изготовления высокоэнергетических постоянных магнитов системы (Nd, Pr)-Fe-B. Шихта для получения термостабильных магнитных сплавов методом кальциетермического восстановления для получения компактных слитков РЗМ при следующем соотношении компонентов, масс., %: фторид редкоземельного металла 70,0-73,0%, кальций металлический 27,0÷30,0%. Cоотношение Pr/ΣR во фториде - 10,0÷75,0%. Состав шихты приводит к сокращению технологического цикла изготовления материала за счет получения редкоземельной композиции нужного состава. 2 табл., 2 пр.

Изобретение относится к технологии производства алундовой и корундовой керамики и позволяет изготовить длинномерные изделия или изделия сложной формы. Способ пайки изделий из оксида алюминия включает приготовление шликера, нанесение его на обе спаиваемые поверхности, сушку и нагрев соединенных поверхностей под нагрузкой. В качестве шликера используют известковое молоко (взвесь избытка гашеной извести в воде), нагрузка на поверхности составляет 5…25 кПа, нагрев ведут до температуры пайки 1380…1500°С в вакуумной печи с откачкой мембранным насосом до температуры 150…250°C с дальнейшим проведением нагрева в вакууме с остаточным давлением 1…10 Па или в атмосфере нейтрального газа (азот, аргон) до температуры пайки с выдержкой при этой температуры в течение 15…30 мин. Техническим результатом является упрощение процедуры пайки. 3 ил., 5 пр.

Изобретение относится к области металлургии цветных металлов, в частности к производству слитков жаропрочных сплавов на основе титана. Лигатура содержит, мас.%: вольфрам 28-32, алюминий 28-32, титан остальное. Изобретение обеспечивает равномерное распределение вольфрама и других легирующих элементов по сечению и длине слитка, что позволяет избежать ликвации по химическому составу и способствует улучшению прочностных и жаростойких характеристик получаемого слитка титанового сплава, а также снижает угар легирующих элементов в процессе выплавки слитка. 1 табл.
Изобретение относится к области металлургии цветных металлов, в частности к производству лигатур для легирования жаропрочных сплавов на основе титана

Изобретение относится к устройствам для очистки зерна, а именно к воздушным сепараторам, и может быть использовано в элеваторной и мукомольно-крупяной промышленности для очистки зерна от аэроотделимой примеси

Изобретение относится к устройствам для классификации тонкоизмельченного полидисперсного сыпучего материала на две фракции, частицы продукта которых отличаются крупностью и аэродинамическими свойствами

Изобретение относится к области электрохимии, в частности к электролитическому получению металлов из их сульфидов

 


Наверх