Патенты автора Ахмедсафин Сергей Каснулович (RU)

Изобретение относится к области геофизических исследований обсаженных газовых и нефтегазовых скважин промыслово-геофизическими методами (ПГИ) для контроля за разработкой нефтегазовых месторождений и обеспечивает исследования через насосно-компрессорные трубы (НКТ). Комплекс ПГИ, дополненный методами индукционной резистивиметрии и диэлектрической влагометрии, позволяет детально определить состав флюида, поступающего из интервала перфорации, и его распределение по стволу скважины или НКТ. Комплексная аппаратура состоит из соединенных между собой двух скважинных модулей, при этом в корпусе верхнего модуля установлены средства ПГИ, зонды спектрометрического гамма-каротажа и сканирующей магнитно-импульсной дефектоскопии, а в корпусе нижнего модуля размещены большой и малый зонды с детекторами нейтрон-нейтронного каротажа, зонд импульсного спектрометрического нейтронного гамма-каротажа и источник нейтронов. Изобретение позволяет расширить круг решаемых задач на всех этапах жизни газовых и нефтегазовых скважин на основе использования основных видов взаимодействия нейтронов с породой и насыщающими ее флюидами в процессе облучения их потоками нейтронов от управляемого генератора нейтронов, работающего как в импульсном, так и в стационарном режимах, с возможностью переключения режима через интерфейс программы для регистрации данных измерений. 3 з.п. ф-лы, 1 ил.

Использование: для импульсного нейтронного каротажа нефтегазовых скважин. Сущность изобретения заключается в том, что малогабаритный мультиметодный многозондовый прибор импульсного нейтронного каротажа нефтегазовых скважин содержит источник нейтронов (ИН), детектор гамма-излучения радиационного захвата нейтронов спектрометрического нейтронного гамма-каротажа (НГК-С), детекторы нейтронов, формирующие малый (МЗ) и большой (БЗ) зонды нейтрон-нейтронного каротажа (ННК), при этом зонды НГК-С и ННК расположены по одну сторону от ИН, зонд НГК-С размещен между БЗ и МЗ зондами ННК и защищен от прямого нейтронного и нейтронного гамма-излучения со стороны ИН и ствола скважины экраном, состоящим из чередующихся полиамидных и свинцовых пластин, нейтронная трубка генератора нейтронов (ГН) и фотоэлектронный умножитель зонда НГК-С помещены в экраны из магнитомягкого железа, а МЗ ННК защищен со стороны ГН и ствола скважины полиамидным экраном, а охранный корпус выполнен из борсодержащего материала. Технический результат: обеспечение возможности использования практически всех основных видов взаимодействия нейтронов с породой и насыщающих их флюидов при облучении их потоками нейтронов от управляемого генератора нейтронов, работающего как в импульсном, так и в стационарном режимах. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области ядерно-физических методов исследований газовых скважин, к способам оценки газонасыщенности галитизированных коллекторов, поровое пространство которых, наряду с газом, содержит галит (соль). Согласно заявленному способу для достоверности оценки Г коллекторов производят измерение прибором 2ИННКт нейтронных потоков: Jмзим, Jбзим, вычисление функции пористости и декрементов затухания плотности потоков тепловых нейтронов: SigМЗим, SigБЗим в физических моделях (ФМ) скважины, помещенных в имитатор водоносыщенного пласта, слагаемого известняком или кварцитом с заполнением пор пресной водой с различным известным водородосодержанием (Wим). Для каждой из указанных ФМ строят палеточные зависимости (ПЗ): Wим - F(Kр)ИННКтим и ПЗ: SigМЗим, SigБЗим, - Σим (известные значения сечения поглощения тепловых нейтронов в пласте), на основе которых создают сводную базу ПЗ. Данные ПЗ используют для перехода от измеренных значений: F(Kр)ИННКтим, SigМЗим и SigБЗим к геологическим параметрам исследуемого пласта: - Wпл и Σпл по прилагаемым формулам. Затем, используя Wпл и Σпл, на основе приведенных петрофизических зависимостей рассчитывают коэффициенты газонасыщенности и галитизации коллектора, %. Технический результат - способ позволяет повысить достоверность оценки газонасыщенности (Г) указанных коллекторов по результатам измерений в скважинах с использованием двухзондового импульсного нейтрон-нейтронного каротажа - 2ИННКт по тепловым нейтронам. 1 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности, к области ядерно-физических методов исследований скважин и может быть использовано в приборах, осуществляющих в сканирующем режиме диагностику заколонного пространства с целью оценки его заполнения легкими и облегченными цементами, определения пористости коллекторов горных пород и их насыщения углеводородами на разном удалении от стенки (в радиальном направлении) обсадной колонны (ОК) и по периметру скважины. Аппаратура содержит установленные в охранном корпусе прибора: общий источник нейтронов и расположенные по одну сторону от него детектор спектрометрического нейтронного гамма-каротажа (СНГК), два детектора тепловых нейтронов нейтрон-нейтронного каротажа по тепловым нейтронам (2ННКт) и два детектора надтепловых нейтронов нейтрон-нейтронного каротажа по надтепловым нейтронам (2ННКнт), при этом указанные детекторы нейтронов экранированы от источника нейтронов, а детекторы 2ННКнт и 2ННКт выполнены в виде кассет со счетчиками нейтронов, каждая из которых содержит центральный счетчик нейтронов и счетчики, равномерно расставленные по периметру внутренней стенки прибора, которые взаимно экранированы между собой и от центрального счетчика полиамидными экранами. Технический результат - заявляемая аппаратура позволяет с повышенной достоверностью осуществлять детальное изучение особенностей заполнения заколонного пространства цементом, определять пористость коллекторов и характер их насыщения, что расширяет функциональные возможности нейтронных методов. 6 з.п. ф-лы, 1 ил.

Изобретение относится к нефтегазодобывающей промышленности, к области ядерно-физических методов исследований скважин и может быть использовано в приборах, осуществляющих в режиме вращательного сканирования диагностику заколонного пространства. Предложена аппаратура мультиметодного многозондового нейтронного каротажа - ММНК для вращательного сканирования разрезов нефтегазовых скважин, которая включает источник нейтронов, детектор спектрометрического нейтронного гамма-каротажа (СНГК), детекторы тепловых нейтронов, формирующие малый и большой зонды нейтрон-нейтронного каротажа по тепловым нейтронам (2ННКт), и детекторы надтепловых нейтронов, формирующие малый и большой зонды нейтрон-нейтронного каротажа по надтепловым нейтронам (2ННКнт). Детекторы 2ННКнт и 2ННКт выполнены в виде кассет со счетчиками нейтронов, каждая из которых содержит центральный счетчик нейтронов и счетчик нейтронов, установленный в кольцевой зоне, приближенной к периметру внутренней стенки прибора. Все зонды СНГК, 2ННКнт и 2ННКт с экранами установлены в дополнительном корпусе, имеющем возможность принудительного вращения вокруг продольной оси прибора внутри охранного кожуха, при этом дополнительный корпус выполнен из прозрачного для прохождения нейтронов материала, не подвергающегося деформациям изгиба и кручения. Технический результат - расширение функциональных возможностей нейтронных методов, что позволяет с повышенной достоверностью исследовать прискважинную зону коллектора по флюидному составу углеводородов и содержанию пластовых вод в поровом пространстве коллектора и их распределение в радиальном направлении от стенки обсадной колонны (ОК) скважины. 6 з.п. ф-лы, 1 ил.

Использование: для контроля качества цементирования облегченными и обычными цементами строящихся скважин и состояния цементного камня эксплуатируемых нефтегазовых скважин. Сущность изобретения заключается в том, что используют метод двухзондового нейтрон-нейтронного каротажа (2ННК) для контроля качества цементирования заколонного пространства строящихся скважин и для контроля состояния цементного камня эксплуатируемых нефтегазовых скважин, заполненных любыми типами флюидов, при этом определяют функционал - Si, характеризующий относительную близость нормализованных обратных скоростей счета нейтронов двух зондов ННК, который реагирует только на степень целостности цемента и не зависит от литологии, пористости - Кп и нефтегазонасыщенности - Кнг пласта. Данный функционал Si вычисляется по заданным формулам и позволяет определить объемную долю цемента - CEMi в заколонном пространстве или показатель целостности цемента по формуле: CEMi=(1-Si)⋅100%. Технический результат: расширение области применения и повышение информативности нейтрон-нейтронной цементометрии (ННК-Ц) для определения состояния цемента за эксплуатационной колонной (ЭК). 4 з.п. ф-лы, 8 ил.

Изобретение относится к области ядерно-физических методов исследований скважин с целью поиска и разведки лития в рапе как источника гидроминерального сырья в соленосных разрезах, вскрытых скважинами различного назначения. Согласно заявленному способу осуществляют регистрацию интенсивностей потоков тепловых нейтронов на малом - Jннкмз и большом - Jннкбз зондах метода нейтрон-нейтронного каротажа - 2ННКт и регистрацию интенсивности потока гамма излучения в жесткой части спектра ГИРЗ с энергией более 2,23 МэВ - Jснгк. Производят вычисление функции пористости F(Kп), функции насыщения F(H)ннк и F(H)снгк по прилагаемым формулам. Осуществляют построение на кросс-плотах F(H)ннк от F(Kп), F(H)снгк от F(Kп) зависимостей, верхние точки которых аппроксимируют функцией F(мах)ннк = a⋅F(Kп)2 ± b⋅F(Kп) и F(мах)снгк = a⋅F(Kп)2 ± b⋅F(Kп). Затем определяют величины текущего содержания хлора и лития, полученные 2ННКт - Сннк, и величины текущего содержания хлора и лития, полученные СНГК - Сснгк. Интервалы, содержащие литий, определяют по низким значениям показаний на малом Jннкмз и большом Jннкбз зондах 2ННКт и зондах СНГК, и по высоким показаниям F(Kп) при превышении значений Сннк над значениями Сснгк, при этом интервалы, содержащие литий, характеризуют как зоны с аномально высоким пластовым давлением (АВПД). Технический результат – повышение достоверности оценки содержания лития в рапе соленосных отложений нефтегазовых скважин и прогноза зон с аномально высоким давлением - АВПД. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерно-физических методов исследований газовых скважин, к способам оценки газонасыщенности коллекторов, поровое пространство которых, наряду с газом, содержит галит (соль). Заявлен способ оценки газонасыщенности галитизированных коллекторов путем регистрации и обработки показаний двухзондового импульсного нейтрон-нейтронного каротажа скважин - 2ИННКт по тепловым нейтронам. Регистрируют интегральные нейтронные потоки J на малом - МЗ ИННКт и большом - БЗ ИННКт зондах с вычислением функции пористости - F(Kp)ИННКт и декрементов затухания потоков нейтронов на МЗ - SigМЗ и БЗ - SigБЗ зондах. Производят запись данных ГК, осуществляют в декартовых координатах кросс-плотные построения вида: от F(Kp)ИННКт, от F(Kp)ИННКт, SigМЗ от F(Kp)ИННКт, SigБЗ от F(Kp)ИННКт, вычисляют по прилагаемым формулам функции насыщения Pdd для МЗ - и БЗ - и декрементов затухания потоков нейтронов для МЗ - PddSigМЗ и БЗ – PddSigБЗ. Строят кросс-плоты Pdd от F(Kp)ИННКт, и производят обработку кросс-плотных распределений по прилагаемым формулам, в результате вычислений определяют следующие геологические параметры: W - полное объемное содержание газа и соли в коллекторе, %, Wсоль - объемное содержание соли, %, Wг - объемное содержание газа, %. Технический результат - повышение достоверности оценки газонасыщенности галитизированных коллекторов. 3 з.п. ф-лы, 7 ил.

Изобретение относится к методам нейтронного каротажа для определения рапонасыщенных интервалов в геологическом разрезе обсаженных нефтегазовых скважин, разделению рапосодержащих и рапопоглощающих интервалов относительно пластов соли, а также выделению интервалов с рапой в цементном камне. Способ позволяет решить проблему выделения рапоносных интервалов при строительстве скважин для планирования и проведения комплекса мероприятий, предотвращающих рапопроявления в скважине, являющегося причиной техногенной аварии. В результате измерений спектрометрического нейтрон-гамма-каротажа - НГК и нейтрон-нейтронного каротажа по тепловым нейтронам - ННК вначале выделяют пласты соли по аномальному росту показаний больших зондов - ННКбз при отсутствии роста показаний малых зондов - ННКмз на фоне показаний этих зондов в водонасыщенном пласте (ВП), затем на фоне полученных показаний выделяют пласты, насыщенные рапой, по резкому падению показаний зондов НГКбз и ННКбз и резкому росту кривой декремента ИННК по сравнению с показаниями указанных зондов в ВП. О наличии рапопоглощающих интервалов судят по их положению под пластами каменной соли с менее резким, чем в случае рапоносного пласта, падением показаний НГКбз и ННКбз и менее резким ростом кривой декремента ИННК по сравнению с их показаниями в ВП. О наличии интервалов поглощения рапы в пустотах цементного камня судят по падению показаний НГКмз и ИННКмз при постоянном значении декремента ИННК по сравнению с их показаниями в ВП. Технический результат - расширение функциональных возможностей комплекса нейтронных методов по выделению интервалов разреза обсаженных нефтегазовых скважин, содержащих рапу, разделению рапосодержащих интервалов и интервалов солей, выделению рапопоглощающих интервалов, а также интервалов с рапой в цементном камне. 4 ил.

Использование: для нейтронного каротажа в режиме кругового сканирования нефтегазовых скважин. Сущность изобретения заключается в том, что реализуют трехзондовый нейтрон-нейтронный каротаж по надтепловым нейтронам - ЗННКнт с помощью скважинного прибора с тремя зондами разной длины. При вращении вокруг оси корпуса прибора регистрируют интенсивности надтепловых нейтронов - центральными и периферийными счетчиками нейтронов всех зондов ЗННКнт и нормируют показания - на показания этих счетчиков в воде - Jц.i, используя и Jц.i, по формулам производят вычисление функции цемента Fцем., определяющей распределение цемента в заколонном пространстве на разном удалении от стенки обсадной колонны скважины, и вычисление функции дефицита цемента ΔFцем. Используя минимальные и максимальные значения ΔFцем., производят интегральную оценку доли цемента по периметру кольцевого заколонного пространства - по отдельным i секторам для каждого зонда. Используя минимальные и максимальные значения Jц.i, рассчитывают интегральную оценку - доли цемента по периметру кольцевого заколонного пространства по исследованному интервалу. Технический результат: повышение достоверности исследования скважин нейтронным методом, позволяющее осуществлять детальное изучение особенностей заполнения заколонного пространства цементом. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к средствам контроля состояния цементного камня за обсадной колонной нефтегазовых скважин и качества цементирования. Технический результат заключается в повышении достоверности результатов исследований скважин нейтронными методами путем раскрытия аналитических возможностей комплекса нейтронных зондов в модификациях 2ННКнт - двухзондовый нейтрон-нейтронный каротаж по надтепловым нейтронам и 2ННКт - двухзондовый нейтрон-нейтронный каротаж по тепловым нейтронам. В исследуемых скважинах производят 2ННКт и 2ННКнт, в результате которых регистрируют интенсивность потоков надтепловых нейтронов на малом - и большом - зондах метода 2ННКнт и интенсивность потоков тепловых нейтронов на малом - и большом - зондах метода 2ННКт, производят вычисление функционала цемента , затем по палеточной зависимости от , полученной на моделях пластов, определяют количественное содержание цемента в % в соответствии с коэффициентом пористости , определяемым по комплексу геофизических исследований скважин (ГИС) открытого ствола исследуемой скважины или в соответствии с коэффициентом пористости полученным в результате измерения зондами метода 2ННКт: . 2 н. и 4 з.п. ф-лы, 4 ил.

Изобретение относится к газодобывающей отрасли и может быть использовано для контроля герметичности муфтовых соединений эксплуатационных колонн (ЭК) в действующих газовых скважинах, а также для выявления интервалов скоплений газа за ЭК с использованием многозондового нейтронного каротажа. Технический результат заключается в расширении аналитические возможности нейтронных методов, позволяющих решить задачи контроля муфтовых соединений ЭК на герметичность и выявления скоплений газа за ЭК действующих газовых скважинах. Способ предусматривает регистрацию текущих интенсивностей потоков надтепловых нейтронов на малом - и большом - зондах нейтронного каротажа по надтепловым нейтронам, и текущую интенсивносить потоков тепловых нейтронов на малом зонде - . Нормируют текущие показания указанных зондов на показания их в воде (Jннк.нт.мз.в., Jннк.нт.бз.в., Jннк.т.мз.в.) и в процессе построения диаграмм изменения указанных нормированных показаний по глубине газовой скважины, выделяют интервалы нахождения муфтовых соединений ЭК, где наблюдаются отрицательные аномальные значения - , а скопления газа за выделенными муфтовыми соединениями определяют по приращению показаний относительно показаний указанного зонда, зарегистрированных по глубине выше и ниже муфтовых соединений ЭК. При этом полное замещение цементного заполнения заколонного пространства газовым скоплением устанавливают по увеличению показаний в 2,0-2,2 раза и увеличению показаний не более чем в в 1,3-1,5 раза относительно фоновых значений. По зарегистрированным превышениям в 1,4-1,5 раза нормированных показаний интенсивности потоков надтепловых нейтронов на малом зонде метода 2ННКнт - над зарегистрированными нормированными показаниями интенсивности потоков надтепловых нейтронов на большом зонде метода 2ННКнт - судят о скоплении газа в цементном камне за эксплуатационной колонной. 2 з.п. ф-лы, 4 ил.

Изобретение относится к нефтегазодобывающей промышленности, к методам нейтронного каротажа для определения минерализации скважинной жидкости по химическим элементам с аномальным поглощением нейтронов, с целью определения геологических параметров разрезов обсаженных нефтегазовых скважин. Техническим результатом является повышение достоверности определения минерализации и плотности скважинной жидкости. В способе, включающем измерение интенсивностей потоков надтепловых и тепловых нейтронов, проходящих от источника нейтронов через скважинную жидкость, осуществляют вычисление функции минерализации как отношения интенсивности потока надтепловых нейтронов к интенсивности потока тепловых нейтронов, нормированных на отношение интенсивности потока тепловых нейтронов к интенсивности потока надтепловых нейтронов в пресной воде, по прилагаемой формуле, затем по калибровочной зависимости, полученной в результате измерений указанных интенсивностей потоков нейтронов, проходящих от источника нейтронов через водный раствор различной минерализации, и вычисления отношения интенсивности потока надтепловых нейтронов к интенсивности потока тепловых нейтронов в минерализованном водном растворе, нормированных на отношение интенсивности потока тепловых нейтронов к интенсивности потока надтепловых нейтронов в пресной воде, по прилагаемой формуле определяют величину минерализации скважинной жидкости. 3 з.п. ф-лы, 4 ил.

Изобретение относится к газовой промышленности, в частности к способам эксплуатации обводненных газовых скважин и транспортировке их продукции. Технический результат заключается в увеличении дебита газовой скважины и сокращении расхода ингибитора гидрато- и льдообразования за счет повышения гидравлической эффективности газосборного трубопровода и снижения его влияния на эксплуатационные характеристики обводненной газовой скважины. В способе удаления жидкости с забоя газовой скважины по технологии эксплуатации по концентрическим лифтовым колоннам подают пластовый флюид из пласта в скважину, разделяют пластовый флюид на забое скважины на газовый поток и газожидкостный поток с механическими примесями, транспортируют газовый поток на устье скважины со скоростью, не обеспечивающей подъем жидкости, транспортируют газожидкостный поток с механическими примесями на устье скважины с давлением выше, чем у газового потока, и со скоростью, обеспечивающей подъем жидкости с механическими примесями, вводят в продукцию скважины ингибитор гидрато- и льдообразования, транспортируют продукцию скважины с ингибитором гидрато- и льдообразования на установку комплексной подготовки газа. Газожидкостный поток после устья скважины направляют на сепарацию для отделения от газа жидкой фазы, отделяют взвешенные частицы от жидкой фазы, выводят осадок, направляют очищенную жидкую фазу в расположенную рядом поглощающую скважину, вводят отсепарированный газ в газовый поток, вводят в смешанный газовый поток ингибитор гидрато- и льдообразования и затем транспортируют смешанный газовый поток с ингибитором гидрато- и льдообразования на установку комплексной подготовки газа. 1 ил., 1 табл.

Изобретение относится к газовой промышленности и может быть использовано при разработке месторождений природного газа, преимущественно на стадии падающей добычи и на завершающей стадии разработки. Технический результат – повышение эффективности разработки месторождений природного газа. По способу осуществляют выборочную, в период сезонного снижения потребительского спроса на газ, остановку газовых скважин в эксплуатационных зонах, расположенных в сводовой части структуры с пониженным, относительно среднего по залежи, пластовым давлением и наиболее близких к центру депрессионной воронки. Остановку осуществляют на срок, необходимый для компенсации потерь пластового давления за счет притока газа из периферийных зон с продолжительностью, определяемой по результатам предыдущей остановки. Учитывают точку пересечения первой производной по времени функции интенсивности притока газа в эксплуатационную зону остановленных скважин, и первой производной функции интенсивности потенциальной добычи газа, определяемой как первая производная зависимости максимального уровня добычи от величины текущего пластового давления в зоне при заданной постоянной величине давления на входе газового промысла. После остановки осуществляют контроль величины пластового давления в зонах до его стабилизации после пуска скважин в эксплуатацию. При этом количество действующих скважин и технологические режимы их работы подбирают таким образом, чтобы объемы отбираемого газа максимально компенсировались за счет его притока из смежных зон. 1 пр., 1 табл., 5 ил.

Изобретение относится к области добычи газа и, в частности, к ремонту газодобывающих скважин, из которых необходимо удалять скапливающуюся на забое жидкость - воду, газоконденсат. Техническим результатом изобретения является обеспечение безопасной эксплуатации скважин. По способу на устье скважины устанавливают противовыбросовое оборудование. Затем через него на безмуфтовой длинномерной трубе спускают в лифтовую колонну пакер-пробку, изготовленную из растворимого материала и снабженную установочной компоновкой. В лифтовую колонну подают продавочную жидкость, под давлением которой пакер-пробкой герметизируют трубное пространство лифтовой колонны. В лифтовую колонну закачивают негорючий газ для вытеснения продавочной жидкости из этой колонны. Извлекают на поверхность безмуфтовую длинномерную трубу вместе с установочной компоновкой. Спускают в лифтовую колонну до пакер-пробки на безмуфтовой длинномерной трубе хвостовик, состоящий из подвески хвостовика с разъединителем и колонны труб, диаметр которых меньше внутреннего диаметра лифтовой колонны. Затем закачивают в лифтовую колонну растворитель. После растворения пакер-пробки спускают хвостовик на необходимую глубину. В безмуфтовую длинномерную трубу спускают продавочную пробку или шар и подают продавочную жидкость до посадки продавочной пробки или шара в посадочный узел подвески хвостовика. Затем прокачкой дополнительных порций продавочной жидкости приводят в действие исполнительные механизмы подвески хвостовика и разъединителя. После этого на безмуфтовой длинномерной трубе извлекают разъединитель вместе с продавочной пробкой или шаром из скважины. Демонтируют противовыбросовое оборудование и запускают скважину в работу. 4 ил.

Изобретение относится к нефтегазодобыче и может быть использовано на стадиях строительства, эксплуатации, консервации и ликвидации скважин многопластовых нефтегазоконденсатных месторождений для определения природы углеводородных газов, поступивших в межколонные пространства скважин, или газов бурового раствора. Техническим результатом является повышение достоверности в определении природы межколонных газопроявлений. Заявленный технический результат достигается за счет того, что дополнительно проводят анализ изотопного состава углерода суммы углеводородов С2-С6 и определяют границы значений изотопного состава углерода метана и изотопного состава углерода суммы углеводородов С2-С6 для эталонных горизонтов. Таблично и/или графически представляют области значений изотопного состава газов из эталонных горизонтов и газов из межколонного пространства скважин или бурового раствора, по степени сходства или совпадения указанных областей этих значений (или отдельных точек) судят о природе исследуемых межколонных газопроявлений. 1 пр., 2 табл., 1 ил.

Изобретение относится к газовой промышленности и может быть использовано для обеспечения процесса эксплуатации обводненных газовых скважин

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к строительству, эксплуатации и ремонту пологих и горизонтальных скважин, оборудованных хвостовиком-фильтром, с изоляцией притока пластовых вод

Изобретение относится к нефтегазодобывающей промышленности, в частности к конструкции пологих и горизонтальных скважин
Изобретение относится к газодобывающей промышленности, в частности к составам для водоизоляции подошвенных вод в газовых скважинах при разработке газовых и газо-конденсатных залежей с использованием химических реагентов

Изобретение относится к газовой промышленности и может быть использовано при определении параметров работы газовой скважины, обеспечивающих вынос жидкости с забоя
Изобретение относится к охране окружающей среды и может быть применено при сооружении и эксплуатации земляных амбаров, сопутствующих буровым работам
Изобретение относится к строительному материалу, изготовленному из промышленных отходов
Изобретение относится к переработке и утилизации отходов бурения и может найти применение в нефтегазодобывающей промышленности при обустройстве кустовых площадок скважин и внутрипромысловых дорог
Изобретение относится к нефтегазодобывающей промышленности для ликвидации негерметичности обсадных колонн скважин

Изобретение относится к способам контроля разработки месторождений углеводородов с использованием методов разведочной геофизики, в частности гравиметрической разведки

Изобретение относится к газодобывающей промышленности, в частности к составам для селективной изоляции подошвенных вод в газовых скважинах, и может быть использовано при проведении водоизоляционных работ в газовых скважинах при разработке газовых и газоконденсатных залежей

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам добычи нефти из подгазовых нефтяных оторочек с использованием водяных барьеров для борьбы с прорывами газа к добывающим скважинам

Изобретение относится к области нефтегазодобывающей промышленности и может применяться при разработке нефтяных оторочек и нефтегазовых залежей подошвенного типа, в том числе с вязкой нефтью и с активными подстилающими водами

Изобретение относится к газодобывающей промышленности, в частности, к составам для водоизоляции подошвенных вод в газовых скважинах и борьбы с выносом песка при разработке газовых и газоконденсатных залежей с использованием химических реагентов
Изобретение относится к газовой промышленности и может быть использовано при проведении газодинамических, геофизических и специальных исследований газовых и газоконденсатных скважин, преимущественно для исследования скважин, сгруппированных в эксплуатационные кусты

Изобретение относится к области использования геофизических методов, а именно гравиметрической разведки, для контроля разработки газовых месторождений

 


Наверх