Патенты автора Мохов Михаил Альбертович (RU)

Изобретение относится к области струйной техники, включая струйные насосы и компрессоры, струйные системы управления и струйные реактивные движители для систем динамического позиционирования. В частности, заявляемое техническое решение может быть использовано в нефтяной и газовой отраслях промышленности для повышения эффективности технологий при добыче и переработке углеводородов, в том числе в условиях разработки морских месторождений. Предлагается струйная насосная установка, содержащая источники рабочей среды и перекачиваемой среды, струйный насос, оснащенный системой сопел, гидравлически соединенных по параллельной схеме и размещенных на входе в рабочую камеру с образованием кольцевого канала, в котором размещены П-образные карманы с образованием в них изолированных друг от друга подводящих каналов, в каждом из которых установлено одно сопло и которые гидравлически связывают рабочую камеру с источниками перекачиваемой среды через запорные регулирующие устройства, при этом источник рабочей среды гидравлически связан с входами сопел, а источники перекачиваемой среды гидравлически соединены с кольцевым каналом. 3 ил.

Изобретение относится к области струйной техники, включая струйные насосы и компрессоры, струйные системы управления и струйные реактивные движители для систем динамического позиционирования. В частности, заявляемое техническое решение может быть использовано в нефтяной и газовой промышленности для повышения эффективности технологий при добыче и переработке углеводородов, в том числе в условиях разработки морских месторождений. Струйная насосная установка, содержащая рабочую камеру, сопло и диафрагму, размещенную между соплом и рабочей камерой, отличающаяся тем, что она снабжена, по крайней мере, двумя дополнительными рабочими камерами, сопло выполнено многоканальным с одним входным каналом и с несколькими выходными каналами, а между соплом и диафрагмой размещена дополнительная диафрагма с возможностью их независимого радиального смещения для частичного или полного перекрытия выходных каналов сопла, при этом каждый выходной канал сопла гидравлически связан с одной из рабочих камер. 9 ил.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода эксплуатации скважин. Сущность: компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, жидкостный насос и эжектор, при этом сопло эжектора гидравлически связано с жидкостным насосом, вход камеры смешения эжектора подключен посредством перепускного трубопровода к нижней части газожидкостного сепаратора, а верхняя часть газожидкостного сепаратора связана через всасывающий газовый клапан с газопроводом низкого давления и через нагнетательный газовый клапан связана с газопроводом высокого давления, выход камеры смешения эжектора через регулируемую задвижку гидравлически связан с входным каналом турбогенератора, выходной канал которого сообщается с источником рабочей жидкости, к которому подключен вход жидкостного насоса. Достигаемый технический результат заключается в обеспечении условий для поддержания более стабильной нагрузки на жидкостный насос и на турбогенератор за счет сокращения продолжительности рабочего цикла при одновременном увеличении частоты срабатывания регулирующей задвижки. 1 ил.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин. Установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, жидкостный насос и эжектор. Вход газожидкостного сепаратора по газу подсоединен через всасывающий газовый клапан к газопроводу низкого давления, а выход газожидкостного сепаратора по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления. Выход газожидкостного сепаратора по жидкости связан через первый дистанционно управляемый клапан с выходом жидкостного насоса и подключен к входу камеры смешения эжектора, выход которой через линию подачи жидкостной смеси с установленным на ней вторым дистанционно управляемым клапаном подсоединен к источнику рабочей жидкости, который подключен к входу жидкостного насоса, выход которого подсоединен к соплу эжектора. Исключаются переходные процессы в работе жидкостного насоса и, как следствие, снижаются колебания мощности жидкостного насоса за счет реализации жидкостного эжекторного процесса. 1 ил.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, жидкостный насос и эжектор. Сопло эжектора гидравлически связано с жидкостным насосом. Вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости гидравлически связан с входным каналом турбогенератора, выходной канал которого сообщается через регулируемую задвижку с источником рабочей жидкости, к которому подключен вход жидкостного насоса. Достигаемый технический результат заключается в обеспечении поддержания стабильной нагрузки на жидкостный насос при переменном расходе на выходе по жидкости газожидкостного сепаратора и выработке энергии за счет исключения переходных процессов работы жидкостного насоса. 1 ил.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор. Сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления. Выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости. Газожидкостной сепаратор оснащен уровнемерной выносной камерой, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора. В уровнемерной выносной камере размещен поплавок. На ее внешней стенке установлены два датчика уровня на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе. Датчики связаны через блок управления с частотным регулятором электропривода. Исключается попадание газа в проточную часть жидкостного насоса и жидкости в газопровод высокого давления за счет синхронизации работы газожидкостного сепаратора и реверсивного жидкостного насоса с колебаниями уровня жидкости в газожидкостном сепараторе. 1 з.п. ф-лы, 1 ил.

Изобретение относится к исследованию фильтрационно-емкостных свойств горных пород и может быть использовано в научно-исследовательских целях для моделирования фильтрационных процессов и прогнозирования коэффициентов вытеснения нефти при проектировании систем разработки конкретного месторождения. Установка содержит насос для подачи вытесняющего агента в кернодержатель с насыпной моделью пласта, выполненной в виде последовательно соединенных идентичных секций образцов пласта. Длину модели выбирают исходя из соблюдения условия подобия модели пласта и натурных соотношений параметров пласта. Секции образцов соединены между собой пустотелыми переходниками с внутренним диаметром, обеспечивающим сохранение линейной скорости фильтрации потока вытесняющим агентом по всей длине модели пласта с учетом формирования зоны смеси. На торцах секций установлены сеточные фильтры, каждая из секций снабжена термостатирующим бандажом, по всей длине насыпной модели установлены датчики дифференциального давления и температуры, выходной канал последней секции кернодержателя подсоединен к емкости для сбора нефти и вытесняющего агента. Бандаж выполнен в виде электрического ленточного нагревателя. Повышается точность моделирования гидродинамических пластовых условий с максимальным приближением к условиям натурального объекта, повышается точность оценки коэффициентов вытеснения нефти. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области нефтяной и газовой промышленности и может быть использована при добыче углеводородов из скважин при интенсивном притоке в скважину воды с песком. Способ подъема неоднородной многофазной продукции из скважины при помощи устройства включает откачку продукции из пласта, частичную сепарацию свободного газа от жидкости с последующим поступлением газожидкостной смеси с остаточным газосодержанием в насос и нагнетанием ее в сопло струйного аппарата, откачку струйным аппаратом продукции скважины из затрубного пространства и с забоя в насосно-компрессорные трубы и подъем продукции на поверхность. При этом периодически прерывают откачку и осуществляют перепуск потока продукции в направлении к забою с помощью перепускного трубопровода, нижний конец которого располагают ниже продуктивного пласта. Устройство для подъема неоднородной многофазной продукции содержит электропривод насоса, газосепаратор, камеру смешения струйного аппарата и сетчатые фильтры. При этом на выходе камеры смешения устанавливают обратный клапан, служащий для сообщения перепускного трубопровода с камерой смешения. При этом на выходе скважины устанавливают датчик расхода, служащий для контроля изменения величины дебита скважины на устье. Датчик расхода подключают к блоку управления, выход которого подсоединяют к частотному регулятору тока электропривода, служащему для регулирования значения подачи насоса. Техническим результатом является повышение эффективности подъема неоднородной многофазной продукции из скважины при интенсивном притоке воды с песком к забою добывающей скважины. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Установка содержит рабочие камеры высокого и низкого давления, выполненные в виде частично заполненных жидкостью подземных вертикальных емкостей с устьевыми головками. Всасывающий и нагнетательный газовые клапаны установлены соответственно на газопроводах низкого и высокого давления, подсоединенных к полостям устьевых головок рабочих камер высокого и низкого давления. Погружной насос размещен в рабочей камере низкого давления. Содержит эжектор, сопло которого подсоединено к выходу погружного насоса. Вход камеры смешения через всасывающий газовый клапан сообщен с газопроводом низкого давления. Выход камеры смешения гидравлически связан с рабочей камерой высокого давления. Рабочие камеры низкого и высокого давления сообщены между собой посредством регулируемых распределительных устройств, установленных соответственно на линии, сообщающей указанные камеры непосредственно, и на линии, соединяющей выход погружного насоса с рабочей камерой высокого давления. Повышается энергоэффективность за счет снижения колебаний мощности насоса и, соответственно, приводного двигателя за счет реализации эжекторного процесса. Также снижаются габариты компрессорной установки. 1 ил.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин. Установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостный насос и эжектор. Сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом. Вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления. Выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости. Повышается энергоэффективность, за счет снижения колебаний мощности жидкостного насоса, и, соответственно, приводного двигателя. 1 з.п. ф-лы, 1 ил..

Изобретение относится к области добычи нефти и газа и может быть использовано при разработке инновационных технологий добычи нефти и газа из обводненных скважин на месторождениях с трудноизвлекаемыми и нетрадиционными запасами углеводородов. Технический результат - интенсификация добычи продукции скважин за счет обеспечения гибкого регулирования в широком диапазоне значений подачи, давления и мощности насосно-эжекторной установки. Устройство содержит установленные на устье скважины двигатель и насос с входным и выходным каналами. К входному каналу насоса подключен эжектор с камерой смешения, соплом и входным газовым каналом. К выходному каналу насоса подключен газожидкостный сепаратор. Выходной канал по жидкости подключен к соплу эжектора, а по газу - через первый дистанционно управляемый клапан к межтрубному пространству двухрядной колонны насосно-компрессорных труб. В нижней части наружной колонны упомянутых труб размещен обратный клапан. Входной газовый канал эжектора гидравлически связан с кольцевым каналом, образованным между наружной колонной двухрядной колонны насосно-компрессорных труб и обсадной колонной скважины. Выкидная линия скважины подключена к вышеуказанному кольцевому каналу, к полости внутренней колонны насосно-компрессорных труб и через второй дистанционно управляемый клапан к межтрубному пространству двухрядной колонны насосно-компрессорных труб. При этом обеспечена возможность закрытия второго дистанционно управляемого клапана и открытия первого дистанционно управляемого клапана при достижении давления газа в сепараторе расчетного давления. 2 ил.

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к разработке месторождений посредством закачки воды и газа в нагнетательные скважины и извлечения нефти через добывающие. Технический результат - упрощение технологии при одновременном снижении затрат на ее осуществление за счет более полного учета факторов, влияющих на эффективность мероприятий по повышению нефтеотдачи. Способ включает приготовление водогазовой смеси в диапазоне значений газосодержания, обеспечивающем устойчивую работу насосной установки, нагнетание ее в одну или более скважин с помощью установки с центробежным насосом и вытеснение нефти из пласта с системой поддержания пластового давления. При этом перед нагнетанием водогазовой смеси в пласт экспериментально определяют зависимость коэффициента вытеснения нефти от газосодержания в водогазовой смеси при пластовых условиях. На основе полученной зависимости выбирают оптимальное значение газосодержания. Непосредственно на скважине определяют зависимость изменения приемистости скважины от газосодержания. Устанавливают рабочее соотношение расходов воды и газа на входе в смеситель. Далее, по мере продвижения фронта вытеснения, расположенного между нагнетательной и добывающей скважинами, рассчитывают текущее значение газосодержания на фронте вытеснения в зависимости от давления. После этого уменьшают содержание газа в водогазовой смеси, поддерживая его на оптимальном уровне. 1 пр., 1 ил.
Изобретение относится к области нефтедобывающей промышленности и может быть использовано для разработки многопластовых нефтяных месторождений, особенно, если их пласты обладают малой нефтенасыщенной толщиной, низкой проницаемостью и содержат нефти повышенной вязкости

 


Наверх