Патенты автора Петров Алексей Викторович (RU)

Изобретение относится к способу получения активного материала по схеме «ядро-оболочка» для анода литий-ионного аккумулятора. Суспензия из графита природного в сферическом виде в водном растворе прекурсора углерода-полиакрилата натрия и стабилизатора седиментации - поливинилпирролидона подается в систему для распылительной сушки. Время перемешивания суспензии до образования однородной смеси для подачи в систему распылительной сушки не менее 30 мин. Массовое соотношение материалов графит/полиакрилат натрия/поливинилпирролидон составляет 72,7:18,2:9,1 мас.% соответственно. Нанесение покрытия, прекурсора углеродного неграфитирующегося материала, на сферический непокрытый графит производится из газовой фазы в системе распылительной сушки при температуре 160±5°С, мощности аспиратора 60%, расходе подачи суспензии 10 мл/мин и расходе распыляемого воздуха 660 л/ч. Далее проводится процесс карбонизации при температуре не менее 800°С с выдержкой при конечной температуре не менее 30 мин. Техническим результатом является получение активного материала для вторичных источников тока, имеющего высокие показатели разрядной емкости и обладающего стабильностью при циклических изменениях ресурса, устранение трудо- и энергозатрат, многостадийности процесса, введение процесса получения в непрерывном режиме. 2 ил., 1 пр., 1 табл.

КЛЕЙ // 2782787
Изобретение может быть использовано для создания неразъемного соединения деталей из углеграфитовых материалов с деталями из керамики и тугоплавких металлов. Клей содержит силикат натрия растворимый, водную дисперсию поливинилацетата, додецилсульфат натрия, наполнитель - искусственный графит марок МПГ-7, МИГ-2 или ГИИ-А фракции менее 26 мкм и дистиллированную воду. Технический результат заключается в снижении электрического и теплового сопротивления клеевого шва в диапазоне рабочих температур до 1600°С. 1 ил., 1 пр.

Изобретение относится к технологии получения композиционных материалов на основе графита по схеме «наполнитель-связующее», а именно к стадии смешивания тонкозернистого кокса-наполнителя и высокотемпературного пека-связующего с отработкой необходимого режима смешивания. Экструзионный способ получения коксопековой композиции для изготовления графитовых материалов на основе тонкозернистого наполнителя изотропной структуры включает предварительное смешивание тонкодисперсного пекового кокса изотропной структуры с максимальным размером частиц не более 10 мкм и высокотемпературного каменноугольного пека фракции менее 2,5 мм в смесителе типа «пьяная бочка» с тремя стальными шарами в качестве активаторов перемешивания в течение 30 минут и экструзионное горячее смешение в двухшнековом экструдере при температуре 290°С. Техническим результатом заявленного изобретения является повышение поверхностного взаимодействия тонкодисперсного кокса-наполнителя и пека-связующего, что в свою очередь повысит плотность и прочность полученных графитовых материалов. 1 табл., 10 пр.

Изобретение относится к получению частиц природного графита для анодов литий-ионных аккумуляторов. Способ получения сферического графита на основе природного графита включает разрушение, окатывание и истирание частиц графита. Исходный природный графит подвергается однократному помолу в турбо-вихревой мельнице в течение не менее 90 мин при частоте оборотов ротора мельницы не менее 3000 об/мин и давлении сжатого воздуха 0,2-0,6 МПа. Затем проводят высокотемпературную очистку в диапазоне температур 2200-2700°С при скорости подъема температуры в данном диапазоне 200°С/ч. Полученный сферический графит имеет зольность 0,01 мас.%. Изобретение позволяет снизить трудо- и энергозатраты, совместить процессы дробления и размола в одном устройстве, проводить процесс сфероидизации графита непрерывно. 1 з.п. ф-лы, 3 ил., 2 табл., 1 пр.

Изобретение относится к производству графитированных углеродных конструкционных материалов и графитированных электродов для электрометаллургических печей. В способе определения температуры керна в печи графитации, включающем измерение температуры одновременно в трех точках по длине стержня-тепловода из графита, один конец которого поддерживается при постоянной температуре 0°С, а второй находится в прямом контакте с керном печи графитации, расчет температуры керна осуществляется с использованием аналитической зависимости формируемого температурного поля вдоль стержня-тепловода, имеющей вид квадратичного трехчлена Т=ах2+bх+с, на основе измеренных данных. Стержень-тепловод состоит из двух частей: измерительной, обеспечивающей съем теплового потока, находящейся в контакте с керном, по длине которой формируется определенная закономерность температурного поля, определяемого соотношением: и охлаждаемой, обеспечивающей необходимые значения q - const в каждый данный момент. При этом измерительная часть стержня-тепловода выполнена из конструкционного графита, а охлаждающая часть из графита любой марки, по форме и размерам сечения может быть отличной от измерительной, но при этом жестко соединенная с ней в стене печи графитации за теплоизоляционным слоем, окружающим керн. Технический результат – упрощение и оптимизация процесса графитизации. 2 з.п. ф-лы, 1 табл.

Изобретение относится к технологии получения графитированных конструкционных материалов с повышенными физико-механическими характеристиками для создания углеродных изделий. Предложен способ получения наноструктурированного каменноугольного пека, включающий смешение частиц дробленого пека в твердом состоянии с углеродными нанотрубками в диспергированном состоянии в атмосфере инертного газа при воздействии на смесь частиц электростатическим полем в униполярном коронном разряде при напряженностях электрического поля от 1 до 6 кВ/см, нагревание смеси выше температуры размягчения при постоянном перемешивании и охлаждение. Согласно способу частицы дробленого пека в твердом состоянии имеют размер -250 мкм, при этом нагревание смеси ведут до температуры равной двойной температуре размягчения пека, а охлаждение ведут до получения заплавленных кусков. Изобретение обеспечивает улучшение характеристик каменноугольных пеков и углерод-углеродных композитов на их основе. 3 табл., 1 ил.
Изобретение относится к технологии термохимической очистки углеродных материалов. Предложенный способ очистки естественного графита включает размещение его в керне печи графитации Ачесона, нагревание путем пропускания через него электростатического тока до температуры 2000-2700°C и обработку очистным реагентом, содержащим галогены. Графит размещают в керне печи в виде отдельных одинаковых по размерам блоков сечением, равным сечению керна, отделенных друг от друга плоскими стенками. Толщина стенок составляет 0,25-0,35 от длины блока. Стенки выполнены из конструкционного или электродного графита с пористостью 20-27%. Изобретение обеспечивает снижение общего сопротивление печи, что облегчает ведение процесса нагревания керна, при этом обеспечена чёткая фиксация положения керна как при загрузке печи, так и при ее разгрузке.

Изобретение относится к химической промышленности и может быть использовано при изготовлении графитированных электродов и конструкционных графитовых материалов. Электрическая печь графитации содержит торцевые стены с встроенными в них графитовыми токоподводами, герметичный зонт, соединенный выходным каналом с дымососом, керн, в котором размещены графитируемые материалы, окруженные со всех сторон слоями теплоизоляционной пересыпки, боковые стены 3 с каналами воздушного охлаждения, коллекторы, расположенные в нижней части стен 3, объединяющие все каналы каждой стены, под с охлаждаемыми подинными каналами. Перекрывающие элементы, расположенные в подинных каналах, обеспечивают в половине из них, чередующихся через один или несколько, движение воздуха по каналу слева направо и его выход последовательно в воздушный коллектор правой стены, а в другой половине - движение воздуха справа налево и его выход в воздушный коллектор левой стены. Перекрывающие элементы выполнены в виде пластин-перекрытий 6 из металла с температурой размягчения не ниже 1000°С, снабженных бортиками-фиксаторами 7 из металла высотой 20-50 мм и имеющих на внутренней поверхности поперечные валики диаметром 3-4 мм, турбулизирующие воздушный поток охлаждения. Расстояние между краями пластин-перекрытий 6 соседних каналов охлаждения не менее 15 мм. 2 ил.

Изобретение относится к производству графитированных конструкционных материалов, а конкретно к операции графитации. Прелагаемый новый способ определения температуры керна печи графитации отличается тем, что измеряют температуру в теплоизоляционном слое по нормали к поверхности керна в нескольких, но не менее чем в трех, точках одновременно, причем в той части слоя, температура которой не превышает 1500°C. На их основе определяют аналитическую зависимость распределения температуры на участке измерения температур, и полученную аналитическую зависимость распространяют на всю толщину теплоизоляционного слоя. В качестве аналитической зависимости принимают квадратный трехчлен вида t=ax2+bx+c. Коэффициенты a, b, c в этой зависимости определяют по одновременно измеренным температурам t(x) в нескольких точках xi в теплоизоляционном слое по нормали к поверхности керна. При этом длина участка нормали к боковой поверхности керна, на котором проводятся измерения температуры, должна быть не менее 0,2 от толщины слоя теплоизоляции. Технический результат - упрощение процесса определения температуры керна печи графитации, а также повышение точности определения температуры керна печи графитации. 2 з.п. ф-лы.

Использование: для радиоизотопной дефектоскопии кольцевых сварных соединений. Сущность изобретения заключается в том, что просвечивание кольцевого сварного стыка изнутри источником ионизирующего излучения и регистрацию макроструктуры стыка кольцеобразной рентгеновской пленкой, размещенной с внешней стороны объекта в соответствующем ей объеме светозащитного пенала со съемной крышкой, оснащенного центрирующей втулкой компенсатора, сквозное отверстие которой соответствует диаметру перемещаемого в зону контроля излучателя, при этом регистрацию потока излучения, несущего информацию о макроструктуре объекта, осуществляют сканированием через прилегающий к глухому торцу пенала и выполненный из радиационно-непрозрачного материала толщиной до 3 мм с возможностью крутильных колебаний с амплитудой не менее 30° либо вращения относительно оси светозащитного пенала с угловой скоростью от 1 до 2 с-1 решетчатый диск, концентрично и регулярно относительно его геометрической оси перфорированный по торцу сквозными шестигранными отверстиями, оси которых пересекаются с геометрической осью диска в фокальной точке, удаленной на 40 мм от его внешнего торца во внутренней полости объекта контроля, а разделительные перемычки между отверстиями не превышают 0,5 мм при минимальном размере шестигранного отверстия до 2 мм по вписанному внутреннему диаметру. Технический результат: повышение качества получаемых снимков в условиях генерации потока рассеянного излучения конструктивными элементами сложной системы контроля. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к получению сорбентов и может быть использовано для очистки отходящих газов химических, металлургических, целлюлозно-бумажных производств от вредных примесей, а также для очистки сточных вод
Изобретение относится к технологии получения графитированных конструкционных материалов нового поколения с повышенными физико-механическими характеристиками для создания углеродных изделий широкой номенклатуры качества

Изобретение относится к радиотехнике и может использоваться в устройствах приема цифровой информации, передаваемой посредством частотной манипуляции сигналов с непрерывной фазой по каналам связи

 


Наверх