Патенты автора Урханова Лариса Алексеевна (RU)

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления материалов и изделий из бетона в гражданском и промышленном строительстве, в том числе с использованием нанотехнологий. Технический результат изобретения - повышение прочности при сжатии цементного камня, уменьшение расхода модификатора структуры и свойств цементного камня, снижение себестоимости бетонных материалов и изделий на основе модифицированного цемента, более простое и доступное приготовление модификатора структуры и свойств цементного камня. Модификатор включает портландцемент, воду и добавку - гидрозоль соли хлорида кальция CaCl2, вводимую в состав портландцемента добавку - гидрозоль хлорида кальция CaCl2 - готовят путем гидролиза соли хлорида кальция CaCl2 в виде раствора 2%-ной концентрации, причем дозировка раствора соли хлорида кальция CaCl2 варьируется в количестве от 0,2 до 1% от массы цемента, при этом расход сухой соли составляет от 0,004 до 0,02% от массы цемента. 1 табл.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском, промышленном и дорожном строительстве, в том числе с использованием нанотехнологий. Для повышения прочности на сжатие, удельной электропроводности электропроводного бетона сырьевая смесь для электропроводного бетона включает портландцемент ЦЕМ 1 32,5 Н, углеродный наноматериал, полученный в качестве побочного продукта при плазменной газификации угля, кварц-полевошпатовый песок, гранитный щебень фракции 5-20 мм и воду, а кварц-полевошпатовый песок содержит с Мкр=2,1, при этом указанный углеродный наноматериал предварительно подвергнут ультразвуковой обработке в диспергаторе «СТ-400А СТ-Brand» в течение 10 минут с водой затворения, при следующем соотношении компонентов, мас.%: указанный портландцемент 16,79-18,89; кварц-полевошпатовый песок с Мк=2,1 29,39-30,64; щебень гранитный фракции 5-20 мм 41,98-46,18, указанный углеродный наноматериал 0,08-0,1; вода затворения 7,56-8,39. 2 табл.

Изобретение относится к области плазменной техники и плазменной технологии, конкретнее к методам модификации полимерных изделий в газовых разрядах низкого давления, которую проводят для придания гидрофильности гидрофобным полимерным материалам, таким как полиэтилен, полипропилен, полиэтилентерефталат, политетрафторэтилен и т.п. Установка содержит вакуумную камеру, систему вакуумирования, держатель, полимерный образец, в вакуумной камере расположены друг напротив друга два электрода, между которыми установлен керамический держатель с полимерным образцом для дальнейшей модификации. Электроды оснащены системой предварительного нагрева, подключенной к источнику питания, с возможностью регулирования их расположения относительно плоскости основания вакуумной камеры, при этом электроды закреплены на шарово-шарнирной опоре при помощи прижимных болтов и прижимной пластины с возможностью регулирования степени модификации полимерного образца, а шарово-шарнирная опора закреплена в основании вакуумной камеры. Технический результат - повышение и регулирование степени модификации поверхности образца при сохранении физико-механических, электрофизических и оптических свойств. 5 ил.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из пенополистиролбетона в гражданском и промышленном строительстве, в том числе с использованием нанотехнологий. Состав смеси для изготовления пенополистиролбетона включает, мас.%: портландцемент 53,86-57,88, полистирольные гранулы 1,66-1,81, золу уноса 12,97-14,95, суперпластификатор Полипласт СП-1 0,34-0,35, пенообразователь ПБ 2000 0,01-0,02, золь кремниевой кислоты, полученный гидролизом кремнефторида натрия 0,09-0,13, воду 26,94-28,91. Технический результат - повышение прочности на сжатие пенополистиролбетона. 3 табл., 3 пр.

Изобретение относится к области строительного производства в автодорожной отросли и может быть применено при изготовлении асфальтобетона, в том числе с использованием нанотехнологий. Состав асфальтобетона включает щебень, кварц-полевошпатовый песок, минеральный порошок, битум и углеродную добавку, в качестве углеродной добавки содержит фуллереновую смесь, полученную при синтезе в электродуговом плазмохимическом реакторе, при следующем соотношении компонентов, мас.%: щебень - 42-44, кварц-полевошпатовый песок с модулем крупности Мкр=3 - 48-50, минеральный порошок МП-1 - 8-9, при этом битум БНД 90/130 берут в количестве 5,4-5,6 мас.% сверх минеральной части, фуллереновую смесь берут в количестве 0,03-0,06 мас.% от массы асфальтобетона, а для равномерного распределения фуллереновой смеси в битуме используется нагрев битума до температуры 130-140°C. Техническим результатом является повышение прочности асфальтобетона на сжатие при 20°C и при 50°C и снижение расхода углеродной добавки. 3 табл., 3 пр.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском, промышленном и дорожном строительстве, в том числе с использованием нанотехнологий. Сырьевая смесь для высокопрочного фибробетона, включающая портландцемент, кварц-полевошпатовый песок Мкр=2,1, армирующий компонент, кремнеземсодержащую добавку и воду в качестве армирующего компонента содержит базальтовое волокно, полученное центробежно-дутьевым способом, а в качестве кремнеземсодержащей добавки - нанодисперсный порошок диоксида кремния Таркосил-05, при следующем соотношении компонентов, мас. %: портландцемент - 23,28-27,37; кварц-полевошпатовый песок Мкр=2,1 - 63,37-66,36; базальтовое волокно - 0,93-1,09; нанодисперсный порошок диоксида кремния Таркосил-05 - 0,12-0,14; вода - 9,31-10,95, при этом используют нанодисперсный порошок диоксида кремния Таркосил-05, предварительно подвергнутый обработке в ультразвуковом диспергаторе совместно с водой затворения в течение 10 минут, а портландцемент совместно с базальтовым волокном смешан в виброистирателе в течение 45 секунд. Технический результат изобретения заключается в повышении прочности на изгиб и на сжатие, коррозионной стойкости фибробетона, уменьшении расхода кремнеземсодержащего компонента, вводимого в сырьевую смесь для повышения коррозионной стойкости базальтового волокна. 3 табл.

Изобретение относится к области строительного производства в автодорожной отросли и может быть применено при изготовлении асфальтобетона, в том числе с использованием нанотехнологий. Состав смеси для асфальтобетона, включающий щебень, песок, битум и углеродную добавку, содержит щебень фр. 5-15 мм, битум БНД 90/130, в качества песка - кварц-полевошпатовый песок с модулем крупности 3, в качестве углеродной добавки - углеродные наноматериалы, полученные как побочный продукт при плазменной обработке угля в плазменном реакторе и имеющие луковичные и нитевидные углеродные структуры, с предварительным их распределением в подогретом до 130-140°C битуме в количестве 0,03-0,06 мас.% от указанной смеси и дополнительно минеральный порошок МП-1 при следующем соотношении компонентов, мас.%: указанный щебень 42-44, указанный песок 48-50, минеральный порошок МП-1 8-9, указанный битум 5,4-5,6 (сверх минеральной части). Технический результат - повышение прочности асфальтобетона на сжатие при 20°С и при 50°С, снижение расхода углеродных наноматериалов в составе асфальтобетона. 3 табл., 3 пр.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, в том числе с использованием нанотехнологий
Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, в том числе с использованием нанотехнологий

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, в том числе с использованием нанотехнологий
Изобретение относится к промышленности строительных материалов, а именно к способу получения гидроактивированного композиционного зольного вяжущего на основе золы-уноса - отхода теплоэнергетики, которые могут быть использованы в производстве коррозионно-стойкого бетона, плотных и ячеистых силикатных бетонов и изделий на их основе
Изобретение относится к промышленности строительных материалов, а именно к составам коррозионностойкого бетона на основе композиционного перлитового вяжущего, которые могут быть использованы в производстве коррозионностойких материалов и изделий: тротуарной плитки, плитки для пола для предприятий химической и пищевой промышленности
Изобретение относится к области производства облицовочных материалов для внутренней отделки, например облицовочной плитки для внутренней отделки и может быть использовано в строительных и отделочных работах
Изобретение относится к промышленности строительных материалов, а именно к составам бесклинкерного вяжущего на основе перлитовых пород, которые могут быть использованы в производстве силикатного кирпича, плотных и ячеистых силикатных бетонов и изделий на их основе

 


Наверх