Патенты автора Трушляков Валерий Иванович (RU)

Группа изобретений относится к области ракетно-космической техники и может быть использована для спасения створки головного обтекателя (СГО) ракеты-носителя (РН). Способ спасения основан на управляемом движении СГО с использованием бортовой системы управления с периодической коррекцией расчётных параметров движения центра масс. Используется двигательная установка с газореактивными соплами и управляемая парашютная система. В апогее траектории полёта СГО в программу управления движением вводят корректирующий импульс. Программные параметры коррекции движения центра масс, углы атаки и силового угла крена СГО определяют из условия допустимых затрат топлива двигательной установки, а кинематические параметры движения СГО на момент раскрытия парашюта определяют из условия оптимальных кинематических параметров области ввода парашюта и координат точки приземления. После раскрытия парашюта осуществляют безмоментный сброс остатков топлива двигательной установки через газореактивные сопла. Устройство спасения включает в свой состав управляемый парашют, систему управления движением СГО с исполнительными органами, систему ввода парашюта и отделения от СГО при приземлении, ёмкость с сжатым газом, ёмкость с пероксидом водорода, клапаны, катализаторы. Достигается расширение диапазона точек падения СГО на требуемые величины в определённом диапазоне и сохранение энергетически оптимальной траектории выведения РН, не создавая новых районов падения. 2 н.п. ф-лы, 11 ил., 2 табл.

Изобретение относится к химической промышленности. Описан способ синтеза состава полимерного композиционного материала (ПКМ) для изготовления нефтепродуктовой тары (НТ), включающий приготовление состава композиции на основе поликарбоната с введением наполнителей, изготовление гранул и ПКМ для проведения физико-механических испытаний и последующую утилизацию ПКМ методом пиролиза, в качестве композиции используют состав на основе поликарбоната с наполнителями, мас. %: молотое угле-, стекло- или базальтовое волокно 2.0-60.0, древесная мука 5.0-15.0, технический углерод 2.0-15.0, углеродные нанотрубки 0.01-1.0, мелкодисперсный порошок металла алюминия/магния 0-2.0, катализаторы – оксиды переходных металлов 0.1-2.0, диспергатор 0.1-1.0, УФ-стабилизатор не более 1.5 и термостабилизатор не более 1.0, поликарбонат – остальное, в качестве диспергатора могут выступать смесь парафиновых восков, смесь парафиновых и монтановых восков, мета-крезол, далее составляют различные варианты составов измельчённых гранул ПКМ с массой mлпу с различными композициями и значениями удельных поверхностей для лабораторной пиролизной установки (ЛПУ), при этом удельные поверхности определяют из условия равенства соотношения площади поверхности гранулы к её массе, равного аналогичному соотношению частицы измельчённого материала из НТ в полноразмерной пиролизной установке (ППУ), соотношения интервалов времён нахождения пиролизного материала, массу mлпу выбирают из условия равенства времён подачи теплоты на поддержание реакции пиролиза и компенсацию тепловых потерь в ЛПУ, ППУ при соответствующих тепловых потоках нагревателей пиролизных камер для ЛПУ и ППУ, каждый вариант ПКМ помещают в ЛПУ и осуществляют пиролиз, подают парогазовую смесь в дожигательную установку, а твёрдый остаток пиролиза в отдельную ёмкость, после чего определяют количественные характеристики токсичных веществ для каждого варианта ПКМ и составляют базы данных для топочных газов, твёрдого остатка пиролиза, из полученных баз данных строят регрессионные зависимости количественных характеристик каждого выделенного токсичного вещества для каждого варианта образца ПКМ и определяют наиболее приемлемый состав композиции ПКМ, степень измельчения, температуру пиролизной камеры, скорость подачи воздуха в эжектор дожигательной установки. Технический результат - получение композиционных материалов в зависимости от их свойств. 3 табл., 3 ил.

Изобретения относятся к области ракетной техники, а именно к системам наддува топливных баков ракет-носителей с жидкостными ракетными двигателями (ЖРД). Для нагрева холодного газа гелия для системы наддува используют топливо для газогенератора – пероксид водорода (ПВ), которое разлагают в каталитическом генераторе на высокотемпературную смесь газов кислорода и воды. Продукты разложения ПВ и холодный газ гелий подают в форсуночную головку, содержащую форсунки для каждого компонента. Охлаждение камеры смешения осуществляют за счёт теплообмена холодного газа гелия. В состав системы наддува входят: шар-баллоны с гелием, газогенератор, теплообменник, управляемые клапаны, выжимная ёмкость для ПВ, газогенератор, форсуночная головка с форсунками для газа гелия и продуктов разложения ПВ, камера смешения. Достигается возможность многократного запуска ЖРД при выведении полезных нагрузок, а также исключении длинных магистралей подачи газа. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области химической технологии и может быть применено к утилизации пластиковой тары для нефтепродуктов в удаленных территориях. В способе утилизации отработавшей пластиковой тары для нефтепродуктов, находящейся в удалённых территориях, перед процессом измельчения проводят сортировку отработавшей тары на две неравные партии и осуществляют маркировку каждой тары в соответствующей партии, в первую партию относят тару, содержащую минимальное количество жидких остатков нефтепродуктов и которую будут измельчать, а во вторую партию входит тара, в которую будут засыпать измельчённый материал, при этом после измельчения первой партии тары вся тара из второй партии должна быть полностью заполнена измельчённым материалом. Размеры измельчённых частиц определяют из условия обеспечения насыпной плотности, соответствующей не более плотности нефтепродуктов, которыми ранее заполнялась тара, и условия обеспечения размещения измельчённой тары первой партии в таре второй партии. Масса загружаемого в тару измельчённого материала не должна превышать исходной массы заправляемых нефтепродуктов. Загружают тару с измельчённым материалом на поддоны, которые использовались для доставки тары с нефтепродуктами, и осуществляют доставку в центральную систему рециклинга, находящуюся, например, в местах изготовления тары. Устройство измельчителя содержит загрузочный бункер, регулируемые вращающиеся режущие элементы, заслонку для выгрузки, загрузочный бункер в виде цилиндра с диаметром, равным максимальному диаметру корпуса измельчаемой тары. Для подачи тары для измельчения и тары для загрузки и загруженной тары введены три линии. Загрузка измельчённого материала осуществляется через гибкий шланг, соединяющий управляемую заслонку с внутренней полостью тары. Блок управления осуществляет прекращение вращающегося агрегата для измельчения тары при полной засыпке тары измельчённым материалом. Техническим результатом изобретения является измельчение тары из-под нефтепродуктов и загрузка измельченного материала в такую же тару. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для стыковки с некооперируемыми объектами космического мусора. Способ увода объектов крупногабаритного космического мусора основан на использовании космического буксира (КБ), оснащенного двигательной установкой для реализации продольных импульсов по «толкающей» схеме, с отделяющегося от него на тросе транспортно-стыковочного модуля (ТСМ), оснащенного декартовой двигательной установкой, и стыковки с космическим мусором (КМ) с использованием системы захвата типа «штырь-конус», «робот-рука» или сеть за счет различия орбитальных скоростей (КБ+ТСМ) и КМ. Орбита КБ+ТСМ определяется по задаваемым параметрам , , , определяющим расчетное положение и скорость КБ по отношению к КМ в плоскости орбиты КМ в момент начала натяжения троса с начальной длиной , где - угол между местной вертикалью орбиты КМ и тросом, соединяющим КМ и КБ; - скорость КБ относительно КМ, перпендикулярная тросу, диаметр троса определяют из условия прочности троса, используя параметры относительного движения, соответствующие началу натяжения троса, c учетом погрешности построения орбиты КБ и определения орбиты КМ. Повышается надежность системы при эксплуатации. 1 з.п. ф-лы, 8 ил.

Изобретения относятся к технологическим процессам, связанным с осушкой различных изделий. Предлагается способ моделирования процесса тепло- и массообмена при испарении модельной жидкости (МЖ) из экспериментального образца (ЭО), основанный на энергетическом воздействии с заданными параметрами на ЭО с МЖ, проведении измерений температуры в различных точках ЭО, в качестве энергетического воздействия на МЖ, размещённую в ЭО, используют лазерное излучение (ЛИ) в заданном диапазоне длин волн, первоначально определяют температуры МЖ в плоскости индикатора, перпендикулярной оси ЛИ в направлении от центра луча ЛИ до стенки ЭО, одним датчиком измерения температуры, определяют распределение величин температуры в зависимости от удаленности от центра ЛИ, определяют количество датчиков измерения температуры в радиальном направлении из условия разности температур МЖ, которая должна превышать величину двойного отклонения используемого датчика измерения температуры, и в процессе ЛИ измеряют параметры воздействия ЛИ, используя прозрачную ёмкость, в том числе диаметр луча ЛИ путём определения диаметров прожигаемых отверстий от воздействия проекции луча на поверхность тонкой плёнки, изготовленной из материала с минимальной теплоёмкостью, на различных расстояниях от головки лазерного излучателя как при наличии МЖ, так и без МЖ, результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ, количество пузырьков внутри МЖ, скорость и направление их движения в МЖ, определяют путём проведения скоростной съёмки, мощность ЛИ, мощность энергетического воздействия ЛИ, начальное расстояние от поверхности излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальной массы выброса МЖ в процессе эксперимента, осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительности импульсами и интервалом времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ и начальная масса МЖ одинаковы, длительность импульса и время между импульсами определяют из условия минимального нагрева МЖ в объёме ЭО. Также заявлено устройство для реализации способа. Технический результат - снижение энергетических затрат, упрощение экспериментальных исследований испарения модельной жидкости с использованием лазерного излучения. 2 н.п. ф-лы, 4 ил.

Настоящее изобретение относится к области разработки полимерных композиционных материалов (ПКМ) с заданными характеристиками и возможностью последующей утилизации сжиганием. Способ разработки ПКМ с учётом его последующей утилизации основан на смешении высокопрочных углеродных волокон с матрицей, изготовлении демонстрационных образцов для проведения испытаний на соответствие характеристик, которыми должен обладать разрабатываемый ПКМ, теплотехнических и экологических характеристик заданным величинам, проведении испытания, после проведения испытаний уточняют состав ПКМ для обеспечения соответствующих характеристик. Матрица представляет собой сплав поликарбоната с сополимером акрилонитрил-стирола и акрилата. Наполнитель представляет собой технический углерод, молотое углеволокно, углеродные нанотрубки. Добавка горючего – мелкодисперсный порошок алюминия. Добавка окислителя – нитрат калия. Устройство для реализации способа разработки ПКМ включает в свой состав систему для изготовления образцов ПКМ. В состав установки вводят систему для определения перечня характеристик, определяемых условиями эксплуатации, систему измельчения экспериментальных образцов ПКМ, систему ввода окислителя в измельченный ПКМ, систему для изготовления пеллет, систему измерений теплотехнических и экологических характеристик пеллет. Технический результат – разработка способа изготовления ПКМ для изготовления тары для хранения и транспортировки горюче-смазочных материалов (ГСМ), обеспечивающего заданные эксплуатационные характеристики (термопрочность, электропроводность, ударная стойкость, возможность длительного контакта с ГСМ и т.д.), с последующей переработкой в топливные брикеты (пеллеты). Утилизация пеллет проводится сжиганием в обычных бытовых печах при обеспечении заданных экологических (токсичности продуктов сжигания как в газовой, так и в конденсированной фазах) и теплотехнических (теплотворность, скорость горения, зольность и т.д.) характеристик. 2 н.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к космической технике. Способ отделения полезных нагрузок(ПН) от орбитальной ступени (ОС) ракеты-носителя основан на использовании невыработанных остатков жидких компонентов ракетного топлива на основе их газификации, обеспечении углового положения в пространстве и стабилизации. Управление движением центра масс и вокруг центра масс ОС осуществляют путём раздельного сброса продуктов газификации из баков горючего и окислителя через регулируемые сопла (отверстия) газореактивной системы. Формирование управляющего и стабилизирующего воздействий осуществляют путём изменения критического сечения сопла (отверстия) сброса парогазовой смеси из баков в ГРС в каждом канале стабилизации. Техническим результатом изобретения является исключение воздействия сбрасываемой парогазовой смеси из баков на отделяющиеся ПН. 3 ил.

Группа изобретений относится к ракетно-космической технике. Способ спуска ускорителя ступени (УС) ракеты-носителя (РН) при аварийном выключении жидкостного ракетного двигателя (АВД) в заданный район падения основан на стабилизации УС. Управление движением выполняется за счёт сброса продуктов газификации из баков горючего и окислителя через регулируемую газореактивную систему (ГРС). Перед пуском РН рассчитывают варианты программы управления функционированием бортовых систем и движением УС нижней и верхней ступеней, соответственно УСн и УСв. При достижении УСн и/или УСв высоты порядка 5 км обеспечивают управляемое вскрытие топливных баков. Устройство для реализации способа включает в свой состав систему управления и навигации, топливный отсек, систему газификации жидких остатков топлива. Кроме того, в него включены газореактивная система сброса в каждом топливном баке, электрическая связь между системами управления УСн и УСв и система принудительного закрытия дренажных клапанов по команде из системы управления. Достигается снижение техногенного воздействия на окружающую среду. 2 н.п. ф-лы, 5 ил., 1 табл.

Группа изобретений относится к области моделирования процессов очистки различных поверхностей изделий от загрязнений, возникающих в процессе производства и эксплуатации, с целью выбора оптимальных режимов и воздействующих факторов. Способ моделирования процесса очистки поверхности включает предварительное взвешивание чистого экспериментального образца (ЭО), нанесение модельного загрязнения (МЗ) и проведение эксперимента по очистке ЭО с нанесённым МЗ при ультразвуковой очистке и при ультразвуковой очистке с кратковременным периодическим механическим воздействием, приводящим к колебанию ЭО на различных частотах. После каждого эксперимента вынимают ЭО, проверяют степень очистки и энергетические затраты, сравнивают с предыдущим результатом. Группа изобретений относится также к устройству для осуществления указанного способа, содержащему УЗ-излучатель, нагреватель, столик, очищаемый ЭО, очистную ванну, устройство для перемещения столика, импульсный генератор и электромагнитный ударный вибратор с подвижным магнитным штоком, причем выход импульсного генератора подключен ко входу электромагнитного ударного вибратора, а подвижный магнитный шток жестко связан с ЭО. Группа изобретений позволяет проводить исследование процесса очистки при дополнительном механическом воздействии в процессе ультразвукового воздействия на очищаемую поверхность, погруженную в очистную ванну с технической жидкостью, что обеспечивает определение эффективности введения механических колебаний в процессе ультразвуковой очистки различных загрязнений. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к ракетно-космической технике. Способ увода отделяющейся части (ОЧ) ракеты-носителя (РН) с орбиты, основан на обеспечении вращения ОЧ вокруг центра масс, сбросе газа наддува перед началом процесса газификации жидких остатков компонентов ракетного топлива (КТ). Перед запуском РН рассчитывают необходимые параметры для каждого бака. Для первоочередной газификации выбирают КТ1, вращают ОЧ вокруг центра масс с расчётной угловой скоростью в плоскости тангажа (рыскания), открывают дренажные клапаны в баке с КТ1 и осуществляют безмоментный сброс давления парогазовой смеси в баке с КТ1 до расчётной величины. Устройство включает в свой состав топливный бак, систему сброса газа из бака, систему получения теплоносителя, систему управления, акустические генераторы, пластины, жестко связанные с излучателями, установленные равномерно на концентрических окружностях, соответствующих уровням топлива, при котором пластины полностью погружены в КТ. Техническим результатом группы изобретений является обеспечение условий взрывобезопасности ОЧ. 2 н.п. ф-лы, 3 ил.

Группа изобретений относится к ракетам-носителям (РН) с жидкостными ракетными двигателями (ЖРД). Способ спуска отделяющейся части (ОЧ) ступени РН основан на ориентации и стабилизации положения ОЧ двигательной установкой вперед, приложении управляющих моментов путём сброса продуктов газификации из баков через газореактивные сопла (ГРС), и вдувом газа в погранслой на боковую поверхность ОЧ. На внеатмосферном участке траектории спуска ОЧ и в разреженных слоях атмосферы управление угловым движением ОЧ осуществляют с помощью ГРС. В процессе спуска ОЧ непрерывно сравнивают управляющие моменты в каналах угловой стабилизации тангажа и рыскания ОЧ, рассчитанные за счёт изменения параметров погранслоя и газореактивной системы при одинаковых массовых секундных расходах с учётом фактических параметров движения. При превышении управляющих моментов за счёт изменения параметров погранслоя управление в каналах стабилизации тангажа и рыскания ОЧ, осуществляют системой вдува газа (СВГ) в погранслой ОЧ, для управления в канале крена используют ГРС. В устройстве для осуществления способа в каналах тангажа и рыскания установлены СВГ в погранслой, соединённые через регулируемые клапаны с магистралями подачи с шар-баллонами газа наддува. Технический результат – повышение эффективности спуска ОЧ. 2 н.п. ф-лы, 3 ил.

Изобретение относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина предусматривает подачу источника тепловой энергии из отдельной ёмкости (8) в баки (2, 3) с остатками компонентов топлива в жидкой (4, 5) и газообразной фазах, газа наддува, и утилизацию продуктов газификации, определение необходимого количества тепловой энергии для испарения жидких (4, 5) остатков КРТ в каждом баке (2, 3). В качестве источника тепловой энергии выбрана перекись водорода (ПВ) и её разложение осуществляют на каталитическом устройстве (10) непосредственно в каждом баке (2, 3). В способе также осуществляют подмешивание парогазовой смеси с продуктами разложения ПВ. Изобретение повышает эффективность процесса газификации остатков компонентов ракетного топлива. 2 н.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к головному обтекателю (ГО) ракеты-носителя (РН), сжигаемому после отделения от РН на атмосферном участке траектории спуска ГО. ГО представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны, содержащую внешний и внутренний несущие слои из материала, состоящего из связующего и углеродной ленты (МНС). Заполнитель, размещенный между внешним и внутренним несущими слоями оболочки ГО состоит из высокоэнергетического материала и пластика, предназначенного для выделения при сгорании необходимого количества теплоты, определяемого из условия нагрева МНС до температуры его возгорания. Материал заполнителя МЗ выбран на основе смеси высокоэнергетического материала, типа смеси хлората калия или перхлората калия. В качестве порошкообразного металла выбраны порошки магния, алюминия, титана, или их сплавов, которые сохраняют свои теплофизические характеристики, в том числе температуру возгорания, прочность на всех этапах его жизненного цикла, включая приготовление материала для изготовления заполнителя и всей трехслойной конструкции ГО, а также на участке траектории выведения РН и траектории спуска ГО после отделения от РН. Материал МНС выбран из условия одновременного возгорания связующего и пластика, в виде композиционного полимерного материала типа углепластик, в частности углеродной ленты и связующего, имеющих близкую температуру воспламенения в интервале 700-800°С. Технический результат заключается в обеспечении сжигания ГО при движении по траектории спуска в слоях атмосферы, исключении факта падения ГО на поверхность Земли и тем самым исключении необходимости выделения района для их падения.

Группа изобретений относится к ракетно-космической технике и может быть использована для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат – снижение районов падения отделяемых частей путем их сжигания на атмосферном участке траектории спуска. Способ заключается в том, что на этапе предполетной подготовки ракеты-носителя производят расчет параметров движения отделяющихся частей - ОЧ до момента падения их на землю. По результатам расчетов определяют участки на траектории спуска для воздействия на ОЧ. Формируют сигнал в процессе автономного полета ОЧ и осуществляют воздействие на конструкцию ОЧ дополнительным тепловым нагружением. При выполнении ОЧ из полимерных композиционных материалов на конструкцию ОЧ устанавливают систему сжигания, состоящую из нескольких модулей, обеспечивающих тепловое нагружение выделенных масс конструкции ОЧ путем подачи теплоты, находящихся в продуктах сгорания смеси газов кислорода и пропана. Количество теплоты, выделяемой каждым модулем, определяют из условия нагрева выбранной массы конструкции ОЧ до температуры горения. Соотношение массовых секундных расходов кислорода и пропана в конкретном модуле системы сжигания, направление движения струй продуктов сгорания определяют из условия обеспечения работоспособности конструкции модуля на интервале времени нагрева, минимума запасов кислорода и пропана. Количество модулей - точек теплового нагружения конструкции ОЧ для обеспечения нагрева выбранной массы конструкции ОЧ до температуры горения выбирают из условия сгорания конструкции ОЧ на заданном интервале времени. 2 н.п. ф-лы, 3 ил.

Изобретение относится к конструкции и эксплуатации ракет-носителей (РН) и их отделяемых частей (ОЧ): отработавших ступеней, переходных отсеков, створок головных обтекателей и т.п. Способ включает этап предполетной подготовки РН, на котором рассчитывают параметры движения ОЧ, определяя участки траектории спуска для воздействия на ОЧ. В ОЧ, выполненной из углепластика, размещают пиротехнический состав, дающий при его сжигании нагрев ОЧ до температуры горения ОЧ в набегающем потоке воздуха. На расчетной высоте задействуют данный состав, воспламеняя зажигающий состав, которым поджигают ОЧ. В качестве заполнителя конструкции ОЧ используют самогорящую смесь энергоемкого компонента с синтетическим полимером, дающую максимальную передачу теплоты к ОЧ. Газы, выделяющиеся при горении, направляют в полые каналы заполнителя (выполненного в виде гофрированной или стержневой конструкции). В качестве энергоемкого компонента используют окислитель (напр., перхлорат аммония), а в пиротехническом составе – напр., смесь порошков алюминия с оксидом железа. Технический результат направлен на достижение полноты сжигания ОЧ в атмосфере и исключение проблемы отчуждаемых районов падения ОЧ. 2 з.п. ф-лы, 5 ил.
Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед пуском определяют массу и температуру остатка топлива и газа наддува в баке ОС после выключения маршевого ЖРД. Рассчитывают количество теплоты, необходимое для испарения остатка топлива в баке, и после отделения ОС от РН воздействуют этой теплотой на данный остаток топлива. Образующуюся при этом парогазовую смесь сбрасывают через безмоментные сопла. На участке максимального скоростного напора обеспечивают прочность бака созданием в нём давления. Процессы в баке завершают до высот 1-5 км, а температуру и давление парогазовой смеси ограничивают исходя из прочности бака. Техническим результатом является лётная отработка системы испарения остатков топлива в баке ОС в близких к штатным условиях функционирования при минимальных затратах ресурсов. 1 з.п. ф-лы.

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования процесса тепло- и массообмена при испарении жидкости со свободной поверхностью в замкнутой емкости, основанный на воздействии давления парогазовой смеси, теплоты и ультразвука, измерении величин давления и температур парогазовой смеси, жидкости и стенок замкнутой емкости. При этом воздействие давления осуществляют путем откачивания парогазовой смеси из замкнутой емкости с фиксацией давления на значениях, при которых наблюдается интенсивное образование пузырьков жидкости; для повышения давления используют парогазовую смесь с заданной влажностью или нейтральный газ; воздействие теплового потока осуществляют с помощью изменения мощности электрического нагревателя и длительности его воздействия; влияние ультразвука на повышение температуры жидкости в замкнутой емкости определяют путем исключения из общей ультразвуковой мощности составляющей, затрачиваемой на перемешивание жидкости. Также раскрыто устройство для реализации способа моделирования процесса тепло- и массообмена. Группа изобретений позволяет получить экспериментальные данные, которые позволят исследовать параметры тепло- и массообмена, в частности получить регрессионное уравнение, описывающее скорость испарения жидкости как функции давления, температуры, параметров ультразвукового воздействия. 2 н.п. ф-лы, 1 ил.

Изобретение относится к методам и средствам очистки орбит от космического мусора, главным образом отработанных ступеней (ОС) ракет-носителей. Способ включает выведение в область очистки космического аппарата-буксира (КАБ) (1) и автономного стыковочного модуля (АСМ) (2) на тросе (4). АСМ (2) стыкуется с ОС (3) и гасит кинетический момент ОС своими управляющими двигателями (6). Кинетический момент связки (1)-(4)-(2)-(3) гасится двигателями КАБ (1) и двигателями (6) АСМ. Сила натяжения троса (4) при стягивании ОС (3) и КАБ (1) поддерживается двигателями КАБ (1) на уровне, заданном по условию прочности. Спуск ОС на орбиту утилизации производят двигателями КАБ и АСМ. ОС выбирают из условия, чтобы указанные операции по её удалению могут быть осуществлены с располагаемыми энергетикой и тяговооружённостью КАБ и АСМ. Технический результат состоит в повышении вероятности успешного проведения операций по активному спуску с орбиты объектов космического мусора. 5 ил., 1 табл.

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат - снижение площадей зон отчуждения из-за отделяемых частей за счет обеспечения их полного сгорания на атмосферном участке траектории спуска. По способу на этапе предполетной подготовки ракеты-носителя выделяют отделяющиеся части, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от ракеты-носителя. Производят расчет параметров движения до момента их падения на поверхность зоны отчуждения. Рассчитывают количество теплоты, получаемой отделяющейся частью за счет аэродинамического нагрева при движении на атмосферном участке траектории спуска до заданной высоты, на которой должно закончиться ее сгорание. Рассчитывают необходимое дополнительное количество теплоты для обеспечения полного сгорания отделяющейся части в атмосфере. Определяют необходимое количество энергетического материала для обеспечения получения заданного количества теплоты. В качестве материала заполнителя выбирают материал, способный к горению в отсутствие дополнительного окислителя и обладающий соответствующими характеристиками для обеспечения требований условий эксплуатации в составе отделяющейся части на всех участках ее функционирования. Количество и положение точек зажигания энергетического материала в составе отделяющейся части определяют из условия ее сжигания на заданном интервале времени. Инициирование воспламенения упомянутого материала осуществляют по достижении заданных параметров движения отделяемой части на атмосферном участке траектории спуска с учетом длительности интервала времени процесса сжигания и конструкции отделяемой части до возможного ее разрушения на крупные фрагменты. 1 з.п. ф-лы.

Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного давления в топливном баке. Дополнительно обеспечивается заданное термодинамическое состояние ПГ, исключающее переход криогенного КТ из состояния газовой фазы в жидкую и твердую при движении в дренажной системе при сбросе ПГ из топливного бака. Газы, подаваемые, в топливный бак, получают в автономном газогенераторе (АГГ), при этом твердотопливные газогенерирующие составы (ТГС) выбирают из условий химической нейтральности между продуктами сгорания ТГС и газифицируемым КТ. Устройство для реализации способа включает в свой состав топливный бак, АГГ для получения горячих газов (теплоносителя), магистрали ввода теплоносителя, дренажную систему и тепловой мост, который дополнительно вводят между АГГ и дренажной системой. Расположение АГГ выбирают в непосредственной близости от дренажной системы. Техническим результатом группы изобретений является обеспечение взрывобезопасности отработавших ступеней РН и безаварийной работы топливного бака. 2 н.п. ф-лы, 3 табл., 3 ил.

Группа изобретений относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя после выключения маршевого жидкостного ракетного двигателя основан на подаче теплоты в баки с остатками компонентов топлива в жидкой и газообразной фазах, газа наддува, и утилизацию продуктов газификации. В бак окислителя (О) подают газ пропан из автономной емкости и осуществляют зажигание пропано-кислородной смеси. Осуществляют совместную подачу смеси продуктов газификации из бака О и пропана из автономной емкости в бак горючего (Г). Осуществляют зажигание этой смеси в баке Г. Оставшиеся продукты газификации в баке О утилизируют путем подачи в газореактивные сопла. Устройство для реализации способа содержит баки Г и О, соединительные магистрали низкого давления между баками О и Г, шар-баллон, соединенный магистралями с баками О и Г с управляющими клапанами и системой ввода и зажигания в баках О и Г. Техническим результатом группы изобретений является повышение эффективности процесса газификации остатков компонентов топливной пары кислород-керосин. 1 з.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН), обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, сброс парогазовой смеси (ПГС) в вакуумную камеру через дренажную магистраль (ДМ) и дренажный электропневмоклапан (ДЭПК), осуществлении подачи в ЭМУ теплоносителя и газа наддува до обеспечения заданных параметров парциального давления паров жидкости, соответствующего заданной секундной массе испарения жидкости при заданном начальном давлении наддува, а суммарное давление соответствует началу сброса ПГС в вакуумную камеру, осуществлении сброса ПГС из ЭМУ через ДМ и ДЭПК в вакуумную камеру на различных интервалах времени, соответствующих различным интервалам длительности работы сопел газореактивной системы ориентации и стабилизации ОС, и определении области параметров ТН, температуры ДМ, ДЭПК, длительности интервалов времени сброса ПГС, при которых появляется конденсат на внутренней поверхности ДМ, ДЭПК и его кристаллизация, осуществлении дополнительного подвода теплоты к ДМ, ДЭПК, минимальную величину которой определяют из условия предотвращения кристаллизации паров жидкости в ДМ и ДЭПК. Устройство для реализации способа включает в свой состав ЭМУ, ДМ, ДЭПК, вакуумную камеру, газоанализатор, аппаратуру регистрации появления конденсата и его кристаллизации, электрический нагреватель ДМ и ЭДПК, кроме того, ЭМУ, ДМ и ДЭПК выполнены из материала, соответствующего реальной конструкции исследуемого топливного бака ракеты-носителя. Изобретение обеспечивает возможность моделирования процесса газификации, появления конденсата и его кристаллизации при конвективном процессе подачи ТН в бак с остатками топлива. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет энергетики, заключенной в невыработанных остатках компонентов жидкого топлива на основе их газификации и подачи в двигательную установку. При этом после входа в атмосферу рассчитывают величину балансировочного угла атаки, его ориентацию, обеспечивающую переход на попадающую траекторию спуска в заданную точку прицеливания. Рассчитывают параметры спиральной траектории («Спираль»), по которой осуществляют полет с балансировочными углами атаки относительно попадающей траектории спуска. Причем переход ОЧ на «Спираль» осуществляется с достижения значений величин аэродинамического момента, обеспечивающего возможность маневра перехода ОЧ на «Спираль» с траектории неуправляемого спуска ОЧ, а нижний конец «Спирали» касается начала траектории тормозного участка, на котором осуществляют отработку тормозного импульса. Движение ОЧ по «Спирали» осуществляют путем разворота ОЧ с угловой скоростью, определяемой из условия попадания ОЧ в начало тормозного участка с минимальной скоростью движения центра масс ОЧ. Достигается снижение массы конструкции, увеличение точности посадки ОЧ, снижение нагрузки на корпус ОЧ. 1 ил.

Изобретение относится к ракетно-космической технике. Способ проведения летно-конструкторских испытаний (ЛКИ) автономного стыковочного модуля (АСМ) для очистки орбит от крупногабаритного космического мусора основан на выборе мишени из имеющихся на орбитах для их увода на орбиты утилизации, выведении с помощью ракеты-носителя, разгонного блока (РБ) и АСМ в область орбиты очистки от объектов космического мусора (мишеней), маневрах дальнего и ближнего наведения для стыковки и захвата мишени, сведении на орбиту утилизации. ЛКИ проводят при попутном пуске ракеты-носителя (РН) для выведения полезной нагрузки КАпн на заданную орбиту. Выбор полезной нагрузки КАпн и ее орбиты, мишени и ее орбиты осуществляют из условия обеспечения возможности реализации маневров дальнего, ближнего наведения на мишень связки «РБ + АСМ» с помощью РБ после отделения КАпн, стыковки, маневров по спуску связки «РБ + АСМ + мишень» в заданный район падения на поверхности Земли с помощью РБ. Время на реализацию всех событий не должно превышать времени активного функционирования РБ. Техническим результатом изобретения является обеспечение проведения ЛКИ при попутном пуске РН и расширение области выбора мишени. 3 ил.

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации жидкого компонента ракетного топлива в баке ступени ракеты-носителя, основанный на подводе в экспериментальную модельную установку (ЭМУ) теплоты, проведении измерений температуры, давления в различных точках ЭМУ, сбросе парогазовой смеси (ПГС) через дренажную магистраль (ДМ), при этом осуществляют подвод газа наддува и кондуктивный подвод теплоты в ЭМУ, количество которых определяют из условия равенства парциальных давлений газа наддува и паров жидкости в ЭМУ и топливном баке, а суммарное давление соответствует началу сброса ПГС в ДМ, диаметр ДМ определяют из условия сброса заданного избытка давления за такое же время, как и в реальном баке, при этом давление срабатывания дренажного клапана выбирают предварительно из заданного интервала, нижняя граница которого - минимальное давление наддува в баке, а верхняя - максимальное давление, при котором сохраняется прочность конструкции ЭМУ, осуществляют определение области параметров процесса газификации, при которых появляется конденсат на внутренней поверхности ДМ и кристаллизация, осуществляют дополнительный подвод тепла к ДМ для предотвращения ее замерзания. Рассмотрено устройство для реализации способа, включающее в свой состав ЭМУ в виде модельного бака, содержащего поддон для жидкости, датчики температуры, давления, входной патрубок, ДМ, дренажный клапан, газоанализатор, при этом дополнительно в ЭМУ введены нагревательные элементы для жидкости и ДМ, в ДМ установлена аппаратура регистрации конденсата и его кристаллизации, а ЭМУ и ДМ выполнены из материала, аналогичного материалу исследуемого топливного бака ракеты-носителя. Изобретение обеспечивает выявление условий появления конденсата в дренажной магистрали с последующей кристаллизацией при заправке ракеты-носителя криогенными компонентами топлива или стоянки в заправленном состоянии на старте при тепловом нагружении топливного бака от окружающей среды. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике. Способ моделирования процесса тепло- и массообмена элемента конструкции летательного аппарата (ЭКЛА) с окружающей средой в условиях снижения абсолютного давления основан на введении в экспериментальную модельную установку (ЭМУ) потока газа, обеспечении условий взаимодействия потока газа в зоне контакта с ЭКЛА, измерении температуры, давления, скорости. К ЭКЛА подают дополнительное количество теплоты путем сжигания пиротехнической смеси, закрепленной на ЭКЛА. Параметры потока газа, давление и состав газа в ЭМУ выбирают в соответствии с параметрами атмосферы на текущей высоте при движении ЭКЛА. Дополнительное количество теплоты подают путем нагрева ЭКЛА тепловым эквивалентом пиротехнической смеси, например электронагревателем. В зону нагрева ЭКЛА дополнительно подают энергию в виде акустического, лазерного воздействия, параметры которых определяют из условия повышения эффективности нагрева ЭКЛА. Устройство для реализации способа включает в свой состав экспериментальный стенд, в виде замкнутого объема для создания пониженного абсолютного давления, ЭМУ, содержащую систему фиксации ЭКЛА, датчики температуры, давления, входной и выходной патрубки, газоанализатор для определения процентного содержания газов на входе и выходе. В состав ЭМУ дополнительно введены пиротехническая смесь с системой зажигания, скоростная видеокамера, система подготовки потока газа, система поворота ЭКЛА с закрепленным источником подвода теплоты относительно направления потока газа, акустический, лазерный излучатели, электрический нагреватель. Изобретение позволяет расширить границы моделирования процесса тепло- и массообмена элемента конструкции ЭКЛА с окружающей средой в условиях снижения абсолютного давления. 2 н. и 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к методам и средствам исследования процесса газификации ракетного топлива в баках изделия. Способ включает введение в экспериментальную установку (ЭУ) теплоносителя в диапазоне углов ввода, обеспечивающих заданные углы натекания теплоносителя на стенки ЭУ и модельную жидкость (в виде капель на поддоне). Поддон изготовлен из материала, аналогичного материалу топливного бака, и установлен на основании ЭУ через тепловые изоляторы. Стенки ЭУ выполнены из стекла, а входной патрубок - в виде шаро-шарнирного соединения, размещенного на боковой стенке, противоположной стенке с выходным патрубком. В ходе эксперимента измеряют температуры и давления в различных точках ЭУ, определяя, при желании, коэфф. теплоотдачи стенки ЭУ, выполняя обдув элементов конструкции ЭУ и исследуемых образцов внутрибаковых элементов, нагрев газа и конструкции в ЭУ в режиме подготовки к проведению эксперимента и т.д. Техническим результатом является расширение функциональных возможностей ЭУ и повышение информативности моделирования. 1 з.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю. По результатам расчетов определяют участки на траектории спуска для воздействия на ОЧ, формируют сигнал в процессе автономного полета ОЧ и осуществляют воздействие на конструкцию ОЧ. На ОЧ размещают пиротехнический состав. При сжигании пиротехнический состав обеспечивает нагрев ОЧ до температуры, при которой происходит их горение в набегающем потоке атмосферного воздуха, по достижении высоты 25-30 км осуществляют зажигание ОЧ с использованием зажигающего состава. Техническим результатом изобретения является максимальное снижение площадей, выделяемых под районы падения ОЧ РН. 5 з.п. ф-лы, 1 табл.

Группа изобретений относится к ракетно-космической технике. Способ спуска отработанной части (ОЧ) ступени РКН на жидких компонентах ракетного топлива в заданный район падения основан на стабилизации и ориентации ОЧ за счет энергетики невыработанных остатков жидких компонентов ракетного топлива на основе их газификации и подачи в сопла сброса газореактивной системы. Продукты газификации используют для их ввода в погранслой. Координаты точки, направление ввода и массовый секундный расход продуктов газификации через систему ввода в погранслой определяют из условия формирования максимального суммарного управляющего воздействия, реализуемого управляющими соплами газореактивной системы и соплами системы ввода газа в погранслой ОЧ. В устройстве для осуществления способа в отделяющуюся часть ступени введены сопла газореактивной системы и сопла ввода продуктов газификации в погранслой для каждого бака, соединенные магистралями с регулируемыми клапанами. Техническим результатом группы изобретений является повышение эффективности при спуске ОЧ ступени РКН. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области ракетно-космической техники и может быть использовано для спуска отделяющихся частей ступеней ракеты после выключения маршевого жидкостного ракетного двигателя (ЖРД). Способ основан на подаче в камеру сгорания газифицированных жидких компонентов ракетного топлива (КРТ) посредством останова маршевого ЖРД, включении системы газификации КРТ, основанной на подаче газа наддува в шары-баллоны с дополнительными КРТ, и, посредством окислительного или восстановительного газогенераторов, в зависимости от конкретного топлива в баках, подаче теплоносителя в баки с остатками КРТ. После останова маршевого ЖРД осуществляют продувку магистралей подачи горючего и окислителя в баки от отсечных клапанов, продукты газификации из каждого бака подают в камеру сгорания маршевого ЖРД. Устройство для реализации тяги жидкостного ракетного двигателя включает в свой состав систему управления и навигации и систему газификации, расположенную за отсечными клапанами, в основных топливных магистралях окислителя и горючего установлены шар-баллоны для продувки магистралей и дополнительные магистрали подачи газифицированной топливной смеси, соединяющие баки окислителя и горючего с основным ЖРД в обход турбонасосного агрегата. Изобретение обеспечивает повышение энергетической эффективности ЖРД за счет реализации энергетических ресурсов, в том числе использование максимального количества остатков КРТ за счет продувки магистралей, что составит для бака горючего прибавку до 100% остатков, а для бака окислителя до 20%, а также за счет использования маршевого ЖРД для системы реализации тяги. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике, в частности к моделированию процесса газификации неизрасходованных остатков жидких компонентов ракетного топлива в баках отработанной ступени ракеты-носителя (РН). Общий процесс моделирования разбивают на два этапа. На первом этапе определяют химический состав и физико-химические параметры синтезированного теплоносителя (ТН). На втором этапе определяют коэффициенты тепло- и массоотдачи, состав продуктов газификации по времени. Выбор реальных газогенерирующих составов осуществляют из условий максимальной эффективности бортовой системы газификации. Устройство для реализации способа включает в свой состав экспериментальную установку, содержащую поддон для жидкого КРТ, системы подачи ТН и измерения. В устройство дополнительно введены баллоны, содержащие ТН и химически устойчивые газообразные составляющие ТН, соединенные через регулируемые клапаны с коллектором, соединенным с нагревателем, датчики влажности и скорости потока. Техническим результатом изобретения является приближение условий проведения экспериментов к реальным с возможностью использования экспериментальной базы в научных и учебных целях. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике, в частности к моделированию процесса сжигания продуктов газификации неизрасходованных остатков жидких компонентов ракетного топлива в баках отработанной ступени ракеты-носителя. В способе моделирования, включающем введение в экспериментальную установку продуктов газификации из каждого бака, зажигание рабочей смеси, проведение измерений параметров процесса, в соответствии с изобретением при моделировании процесса сжигания продуктов газификации окислителя, исследуемый состав приготавливают путем смешения газообразного окислителя, паров воды и гелия, а при моделировании процесса сжигания продуктов газификации горючего, исследуемый состав приготавливают путем смешения теплоносителя, газообразного горючего и гелия. Устройство для реализации способа, включающее в свой состав коллектор, экспериментальный бак, магистрали подачи компонентов топлива, при этом в его состав введены баллоны, наполненные продуктами газификации компонентов топлива и соединенные через регулируемые клапаны, и дроссели с коллектором, система зажигания продуктов газификации. Изобретение обеспечивает расширение экспериментальных методов исследований сжигания сложных составов, а также снижение затрат при проведении экспериментальных исследований. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для снижения площадей районов падения отделяющихся частей (ОЧ) ракет космического назначения (РКН). В способе минимизации зон отчуждения ОЧ определяют дополнительное количество теплоты, необходимое для сжигания ОЧ при движении на атмосферной части траектории спуска до заданной высоты, на которой должно закончиться их сгорание в атмосфере. Определенную массу энергетического материала помещают в конструкцию ОЧ, например в сотовые ячейки конструкции оболочки головного обтекателя. Техническим результатом изобретения является снижение площади зоны необходимого отчуждения.

Изобретение относится к ракетно-космической технике и может быть использовано при спуске отделяющейся части ступени ракеты космического назначения (ОЧ РКН). ОЧ РКН содержит систему управления и навигации, топливный отсек, систему газификации жидких остатков топлива, 2 противоположно установленных друг другу сопла сброса, пиромембраны. Стабилизируют ОЧ в статически устойчивом положении, используют энергетику на основе газификации невыработанных остатков жидких компонентов ракетного топлива, обеспечивают угловое положение в пространстве, соответствующее минимальному углу атаки при входе в плотные слои атмосферы, совершают аэродинамический маневр, осуществляют управление движением центра масс и вокруг центра масс ОЧ путем раздельного сброса продуктов газификации (ПГ) из баков горючего и окислителя через регулируемые сопла газореактивной системы (ГС), осуществляют безмоментный сброс оставшихся продуктов газификации из баков через сопла сброса ГС. Изобретение позволяет повысить точность стабилизации ОЧ при штатных возмущениях, снизить массу и габариты системы утилизации ПГ, частоты колебаний ОЧ. 2 н.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к ракетно-космической технике и может быть использовано в головных обтекателях (ГО) ракет космического назначения (РКН). ГО для РКН представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны, содержит внешний несущий слой из углепластика, внутренний несущий слой, металлический сотовый заполнитель в виде одинаковых по массе и размеру пластин с термитно-зажигающей смесью (ТЗС) с окислителем, которым является хлорат калия или перхлорат калия, порошкообразным металлом, которым является магний, или алюминий, или титан, или сплав, и связующим, которым является коллоксилин. Масса ТЗС зависит от массы конструкции оболочки ГО, теплоты, выделяющейся при сгорании ТЗС, средней температуры конструкции оболочки ГО на момент вхождения в плотные слои атмосферы, температуры, необходимой для обеспечения начала самопроизвольного процесса горения конструкции оболочки ГО. Изобретение позволяет обеспечить сгорание ГО при движении по траектории спуска в слоях атмосферы, исключить необходимость выделения района падения для ГО. 9 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к ракетно-космической технике. Способ повышения эффективности ракет космического назначения (РКН) с маршевыми жидкостными ракетными двигателями (ЖРД) основан на использовании невыработанных жидких остатков компонентов ракетного топлива (КРТ) в баках отделяющихся частей (ОЧ) ступеней РКН с помощью системы извлечения и реализации энергетических ресурсов (СИРЭР). Траекторию выведения ступени РКН разделяют на два этапа. На первом этапе осуществляют выработку рабочих запасов топлива через маршевый ЖРД. На втором этапе одновременно с выключением маршевого ЖРД запускают СИРЭР, осуществляют газификацию остатков топлива в обоих баках и дополнительную отработку импульса маневра ступени. Изобретение обеспечивает повышение энергетических характеристик ракеты космического назначения с маршевым жидкостным ракетным двигателем.

Изобретение относится к моделирующим устройствам и может быть использовано при построении процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН). Устройство для моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках ОЧ ступени РН содержит экспериментальную установку (ЭУ) в виде модельного бака с поддоном для газифицируемой жидкости, датчиками температуры и давления, баллоны с заранее подготовленным газом, электропневмоклапан, логическое устройство, электронагреватель (ЭН). Вводят в ЭУ теплоноситель (ТН) в виде газовой струи в виде заранее подготовленного газа с заданными параметрами и соответствующим продуктам сгорания сжигаемого топлива в камере газогенератора химическим составом, обеспечивают заданные условия взаимодействия в зоне контакта ТН с поверхностью жидкости, измеряют температуру и давление в различных точках, подают с термодатчика сигнал в логическое устройство, сравнивают сигнал с термодатчика с заданным сигналом на включение или выключение ЭН, включают или выключают ЭН в зависимости от весовых коэффициентов, отклонения текущей температуры ТН, скоростей остывания и повышения температуры ТН, достигают стационарного режима усредненной температуры систем, прекращают подачу ТН в ЭУ. Изобретение позволяет повысить экспериментальную точность процесса газификации. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для управления выведением ракеты космического назначения. Устройство для управления выведением ракеты космического назначения содержит систему управления и навигации, газореактивные сопла, систему газификации с автономным газогенератором с мембранной системой подачи компонентов топлива, возбудителями акустических колебаний, магистрали подачи продуктов газификации, соединенные через управляемые заслонки с системой подачи топлива в соответствующие газогенераторы. Изобретение позволяет снизить массу активной бортовой системы спуска отработанной ступени. 2 ил.

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН) в условиях малой гравитации с использованием экспериментальных модельных установок в земных условиях, а также и при натурных пусках РН с системами газификации. Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива (КРТ) в баках ОЧ ступени РН, основанном на введении в экспериментальную установку теплоносителя (ТН) с заданными параметрами, обеспечении заданных условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого КРТ, проведении измерений температуры, давления в различных точках ЭУ, при этом проводят дополнительные измерения скорости потока ТН в различных точках ЭУ, влажности газа на выходе из ЭУ, и рассчитывают на основе проведенных измерений значения суммарной теплоты, поступившей в объем ЭУ в течение всего эксперимента. Изобретение обеспечивает повышение достоверности результатов экспериментальных исследований, снижение затраты на проведение экспериментов при обнаружении недостоверных измерений или неисправности оборудования путем прекращения эксперимента и повышение надежность измерений. 2 н. и 3 з.п. ф-лы.

Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит объектов космического мусора (ОКМ) на орбиты утилизации. Способ включает выведение космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных для очистки от ОКМ. Выбор последовательности увода ОКМ осуществляют путем сравнения критерия, например вероятности столкновения ОКМ с другими космическими объектами, для каждого ОКМ. Компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения. Техническим результатом изобретения является повышение эффективности проведения операций по удалению ОКМ с рабочих орбит.

Изобретение относится к ракетно-космической технике и может быть использовано для увода отделяющихся частей ступеней ракет космического назначения. Получают импульс путем выброса газифицированных жидких остатков невыработанных компонентов ракетного топлива (РТ), обеспечивают импульс за счет сгорания невыработанных компонентов РТ в камере газового ракетного двигателя, ограничивают объем невыработанных остатков РТ, разделяют секундный массовый расход теплоносителя (ТН) на 2 части (одну часть подают в объем, ограниченной сеткой, другую - во вторую часть топливного бака), определяют количество подаваемого ТН из условия испарения оставшихся капель компонентов РТ. Устройство для увода отделяющейся части ракеты-носителя содержит топливные баки окислителя и горючего, систему наддува баков, газовый ракетный двигатель с системами питания и газификации, магистрали с акустическими излучателями (рассчитанными из условия минимальных массовых затрат на газификацию заданными количеством топлива и давления), разделительную сетку (рассчитанную от значения силы поверхностного натяжения). Изобретение позволяет снизить энергетические затраты на газификацию заданного количества остатков компонентов РТ. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к автоматической стыковке активных космических аппаратов (АКА) с некооперируемыми пассивными космическими аппаратами (ПКА). АКА включает в свой состав самонаводящийся космический микробуксир (КМБ) для доставки троса, выпускаемого с АКА, и оснащен стыковочным штырем. Стягивание ПКА и АКА осуществляется с помощью троса. В качестве устройства стыковки на ПКА используется сопло маршевого двигателя, куда вводится и где фиксируется стыковочный штырь. При выполнении стыковки осуществляют стабилизацию углового положения АКА и связки КМБ и ПКА в инерциальной системе координат с центром, находящимся в центре масс АКА. Синхронизация угловых скоростей связки КМБ и ПКА с АКА, а также совмещение продольных осей АКА и указанной связки с направлением линии, соединяющей их центры масс, осуществляются с помощью двигателей АКА и КМБ. После касания связки КМБ и ПКА посадочного места на АКА осуществляют фиксацию связки с помощью системы стыковки, установленной на АКА. Техническим результатом изобретения является расширение области условий возможной стыковки с ПКА и упрощение процесса стыковки. 7 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для отделяющихся частей (ОЧ) ступеней ракет космического назначения (РКН) для увода на орбиты утилизации или в указанные районы падения. Способ реализации тяги ракетного двигателя, основанный на газификации жидких компонентов ракетного топлива (КРТ) и подаче их в камеру сгорания, при этом после останова маршевого жидкостного ракетного двигателя включают систему газификации КРТ, в шары-баллоны с дополнительными КРТ подают газ наддува и посредством окислительного и восстановительного газогенераторов в зависимости от конкретного топлива в баках осуществляют подачу теплоносителей в баки с остатками КРТ. Изобретение обеспечивает повышение энергетической эффективности ЖРД и экологической безопасности, а также расширение тактико-технических характеристик РКН. 1 ил., 1 табл.

Изобретение относится к ракетно-космической технике с жидкостными ракетными двигателями (ЖРД), разгонным блокам и могут быть использованы при запуске двигательных установок (ДУ), когда остатки запасов жидкого топлива малы и не превышают 3% от начальной заправки. В способе увода отделяющейся части (ОЧ) ступени ракеты-носителя, основанном на газификации жидких остатков невыработанных компонентов ракетного топлива (КРТ) в баках окислителя и горючего, обеспечении тормозного импульса за счет их сгорания в камере газового ракетного двигателя (ГРД) и высокоскоростного истечения продуктов сгорания в космическое пространство, согласно изобретению для газификации невыработанных остатков КРТ используют твердотопливные газогенерирующие составы (ТГГС), причем в бак окислителя подают ТГГС с избытком кислорода, а в бак горючего - с недостатком кислорода, при этом химический состав и количество ТГГС при минимально возможных остатках КРТ определяют исходя из условий реализации заданной величины характеристической скорости: где - характеристическая скорость; - импульс, реализуемый за счет минимальных невыработанных остатков КРТ в баках ОЧ и ТГГС, необходимых для их газификации; - импульс, реализуемый только за счет сгорания в ГРД газов ТГГС. Устройство для реализации способа в виде двигательной установки (ДУ), включающей в свой состав топливные баки окислителя и горючего, систему наддува баков, газовый ракетный двигатель с системой питания и системой газификации остатков КРТ, причем ДУ снабжена твердотопливными газогенераторами, выходы которых соединены с устройствами ввода газа, снабженными пиромембранами, в соответствующие топливные баки с остатками жидких КРТ. Изобретение обеспечивает повышение эффективности использования жидких остатков КРТ в топливных баках на момент выключения маршевого ЖРД. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к ракетно-космической технике и может быть использовано для спуска отделяющихся частей (ОЧ) ракет космического назначения (РКН) с орбит полезных нагрузок. ОЧ РКН содержит топливный отсек, силовой отсек с днищами. На верхнем днище установлены поворотные камеры газового ракетного двигателя, на нижнем - маршевая двигательная установка (МДУ) с удлиненным зарядом, соединенным электрической связью через коммутирующее устройство с источником питания. ОЧ РКН ориентируют и стабилизируют за счет энергетики газифицированных остатков компонентов жидкого топлива, прикладывают импульс скорости, зависящий от радиусов апогея и перигея орбиты спуска МДУ ОЧ. Изобретение позволяет уменьшить площадь района падения фрагментов ОЧ ступени РКН. 2 н. и 1 з.п. ф-лы, 2 ил.

 


Наверх