Патенты автора Бобовников Николай Юрьевич (RU)

Изобретение относится к автоматической сигнализации и предназначается для применения в помехозащищённых системах предотвращения образования дугового разряда при коротких замыканиях на шинах распределительных устройств в замкнутых пространствах электрических подстанций и энергоустановок. Устройство предотвращения образования дугового разряда содержит фотоэлектрический приёмник, токоограничивающий резистор, биполярный транзистор с изолированным затвором, исполнительный механизм. Фотоэлектрический приёмник снабжен оптическим ультрафиолетовым фильтром, сцинтиллятором-люминофором и фотопреобразователем с максимальной спектральной чувствительностью в инфракрасной области спектра, при этом вывод фотопреобразователя через токоограничивающий резистор подключен к базе биполярного транзистора с изолированным затвором, а исполнительный механизм подключен в цепи коллектора биполярного транзистора с изолированным затвором. Технический результат - повышение чувствительности, помехозащищённости и расширение функциональных возможностей устройства. 2 ил.

Изобретение относится к электротехнике, в частности, к двигателям постоянного тока с постоянным магнитом, использующим солнечный фотоэлектрический генератор для питания электрических обмоток. Солнечный электромагнитный двигатель содержит ротор, фотоэлектрический генератор из скоммутированных солнечных элементов с p-n переходами, соединённый с электрическими катушками, статор, постоянный магнит, на краю диска ротора установлены n электрических катушек, n = 1, 2, 3… m натуральный ряд чисел, оси симметрии электрических катушек перпендикулярны плоскости диска, на статоре напротив каждой катушки установлены попарно с зазором 2n постоянных магнитов, где n = 1, 2, 3… m натуральный ряд чисел, в каждой паре магнитов плоскости сторон, содержащих северный и южный полюсы, параллельны друг другу и радиусу диска и ориентированы друг к другу противоположными полюсами с величиной зазора между магнитами 1-6 мм, одна из сторон каждой катушки ротора установлена в зазоре между магнитами в каждой паре магнитов, высота катушек ротора на 0,5-3 мм меньше величины зазора между магнитами, фотоэлектрический генератор установлен на роторе и соединён через диод, ёмкость и устройство импульсной коммутации с электрическими катушками ротора, устройство импульсной коммутации содержит датчик контроля расположения катушки ротора в зазоре магнитов статора и коммутатор подачи импульсного тока и напряжения на электрические катушки ротора от фотоэлектрического генератора. Изобретение содержит второй вариант выполнения двигателя. Технический результат заключается в более полном использовании энергии солнечных элементов и увеличении их напряжения, а также в снижении потерь энергии на сопротивлении ротора и скользящих контактах к ротору. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к гелиотехнике, в частности к устройству и способу преобразования ультрафиолетового излучения в электрическую энергию. Устройство для преобразования ультрафиолетового излучения содержит оптический фильтр и фотоэлектрический преобразователь, между оптическим фильтром и фотоэлектрическим преобразователем установлен сцинтиллятор и люминофор для преобразования ультрафиолетового излучения в красную область спектра, например, в виде пластины иттрий-алюминиевого граната с примесью ионов европия Y3Al5O12:Eu2+ или ионов церия Y3Al5O12:Се3+, а фотоэлектрический преобразователь выполнен с максимумом спектральной чувствительности в красной области спектра 620-780 нм. Также предложен способ преобразования энергии ультрафиолетового излучения. Предложенные изобретения обеспечивают повышение эффективности преобразования ультрафиолетового излучения в электрическую энергию в диапазоне 200-380 нм, при этом спектральная чувствительность устройства в ультрафиолетовом диапазоне увеличится до 0,6-0,8 относительных единиц, а эффективность преобразования энергии ультрафиолетового излучения увеличится в 2-3 раза. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в электрических машинах с постоянными магнитами и солнечными модулями. Технический результат заключается в более полном использовании энергии солнечных модулей и увеличении их мощности, в снижении ЭДС самоиндукции и реакции торможения ротора при взаимодействии с магнитным полем статора. Солнечный модуль закреплён тыльной поверхностью осесимметрично через изолирующую прокладку на торце токопроводящей оси ротора. Ротор выполнен в виде проводящего диска, закреплённого осесимметрично на оси ротора под солнечным модулем с зазором на расстоянии от тыльной поверхности солнечного модуля. Токовывод от тыльной поверхности солнечного модуля соединён c электрической обмоткой в виде беличьей клетки, которая соединена с ободом проводящего диска ротора. Основной постоянный магнит статора установлен осесимметрично с зазором под проводящим диском ротора, изолирован от оси ротора и имеет площадь поверхности, соизмеримую с площадью проводящего диска ротора. По окружности беличьей клетки солнечного магнитного генератора установлены неподвижно в виде цилиндра соосно с осью ротора одноимёнными полюсами к оси ротора дополнительные постоянные магниты статора, плоскости которых перпендикулярны плоскости основного постоянного магнита статора. Один токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к токовыводу на рабочей поверхности в центре солнечного модуля; второй токовывод солнечного магнитного генератора выполнен в виде скользящего контакта к оси вращения ротора. 3 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к области преобразования солнечной энергии в электрическую, в первую очередь к конструкции солнечных электростанций. В солнечной электростанции двухсторонние солнечные модули установлены на горизонтальной поверхности в экваториальной области от 30° ю. ш. до 30° с. ш. в меридиональном направлении с ориентацией рабочей поверхности на восток и запад, между рядами двухсторонних солнечных модулей в меридиональном направлении установлены дополнительные опоры, на опорах для двухсторонних солнечных модулей и на дополнительных опорах установлены две группы отражателей солнечной энергии с коэффициентом отражения 0,8–0,95 и с двухгранным углом между ними γ=120-180°, размеры отражателей солнечной энергии равны расстоянию между опорами, отражатели солнечной энергии закреплены по углам на опорах, а расстояние между рядами двухсторонних солнечных модулей и высота h двухсторонних солнечных модулей связаны соотношением, указанным в формуле изобретения, также определяется по расчетной формуле длина L отражателей солнечной энергии в меридиональном направлении и ширина D в широтном направлении. Во втором варианте в солнечной электростанции двухсторонние солнечные модули установлены на наклонной поверхности в области 30–90° ю. ш. и 30–90° с. ш., наклонённой на юг в северном полушарии и на север в южном полушарии под углом β=ϕ-Δ, где ϕ - широта местности, Δ – отклонение, Δ=0-24°, двухсторонние солнечные модули установлены в меридиональном направлении с ориентацией рабочей поверхности на восток и запад, между рядами двухсторонних солнечных модулей в меридиональном направлении установлены дополнительные опоры, на опорах для двухсторонних солнечных модулей и на дополнительных опорах установлены две группы отражателей солнечной энергии с коэффициентом отражения 0,8–0,95 и с двухгранным углом между ними γ=120-180°, размеры отражателей солнечной энергии равны расстоянию между опорами, отражатели солнечной энергии закреплены по углам на опорах. Технический результат заключается в увеличении годового производства электрической энергии. 2 н. и 8 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора, установленные в прозрачной для солнечного излучения оболочке и снабженные устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения из набора плоских тонких пластин из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, ширина каждой пластины равна расстоянию между токоотводами, произведение толщины пластин на их количество определяет размер гомогенизатора вдоль плоскости р-n переходов диодных структур, длина гомогенизатора в 2-10 раз больше размеров рабочей поверхности фотоприемника, плоскости диодных структур параллельны двум из четырех граней гомогенизатора, а устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная их площадь при естественном охлаждении равна площади миделя концентратора. Технический результат заключается в снижении потерь электроэнергии, увеличении КПД и срока службы солнечной электростанции. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области обработки деталей на оборудовании с ЧПУ, а в частности к системам контролирования вспомогательных операций удаления стружки и пыли из зоны резания

 


Наверх