Патенты автора Зимин Алексей Владимирович (RU)

Изобретение относится к области обогащения золотосодержащих руд и может быть использовано для оптимизации управления технологическими процессами в горнорудной промышленности. Способ автоматического контроля и управления процессом комплексного обогащения золотосодержащих руд включает анализ элементного состава поступающей на переработку руды и продуктов обогащения, измерение входных воздействий и внутренних параметров технологических процессов, оценку сортности поступающей на переработку руды, формирование на основе полученных данных архива информации, характеризующей эффективность производственного процесса для различных сортов руды, скользящее обновление архивов информации, идентификацию текущего массива данных с имеющимися архивными данными для сортов руды, аналогичных текущему и обеспечивающих достижение заданных критериев эффективности, и формирование на основе этой процедуры заданий системам регулирования. Дополнительно оценивают содержание золота в исходной руде путем построения корреляционных зависимостей содержания золота от сопутствующих элементов-индикаторов, с учетом вычисленного значения содержания золота и найденного соотношения компонентного элементного состава оценивают сортность поступающей на переработку руды. Для текущего сорта перерабатываемой руды вычисляют взаимные корреляционные функции связи содержаний компонентов элементного состава, имеющих наибольшую значимость в питании переделов рудоподготовки, обогащения, гидрометаллургической доводки промпродуктов обогащения с их содержаниями в выходных продуктах, находят времена сдвига фаз измерений τ1max, τ2max и τ3max, обеспечивающих достижение максимумов взаимных корреляционных функций, эквивалентных среднестатистической длительности протекания процессов, задают критерии, оценивающие эффективность функционирования обогатительного комплекса в целом. Задают критерии, оценивающие эффективность работы каждого из технологических переделов, анализируют содержание золота в жидкой фазе хвостов флотации на стадии их цианирования в процессе гидрометаллургической доводки. С учетом найденной длительности процесса обогащения τ2max формируют массив данных, характеризующих зависимость содержания золота в питании передела обогащения от элементного состава твердой фазы и содержания золота в жидкой фазе его хвостов. На основе сформированных массивов данных строят уравнение множественной регрессии, по найденному уравнению множественной регрессии оценивают содержание золота в питании флотации и вычисляют % извлечения золота в концентрат. Далее анализируют содержание золота в жидкой фазе хвостов гидрометаллургической доводки промпродукта обогащения, с учетом найденной длительности процесса обогащения τ3max формируют массив данных, характеризующих зависимость содержания золота в твердой фазе отвальных хвостов от элементного состава твердой фазы, содержания золота в жидкой фазе хвостов передела обогащения и содержания золота в жидкой фазе отвальных хвостов. На основе сформированных массивов данных строят уравнение множественной регрессии, по найденному уравнению множественной регрессии оценивают содержание золота в твердой фазе хвостов, вычисляют суммарные потери золота в жидкой и твердой фазах хвостов, вычисляют % извлечения золота в концентрат гидрометаллургического передела. С учетом полученных данных вычисляют суммарное извлечение золота из исходной руды. В случае достижения заданных критериев эффективности для обогатительного комплекса в целом формируют массивы входных воздействий и внутренних параметров процессов, синхронизированных по времени с учетом найденных среднестатистических длительностей τ1max, τ2max и τ3max осуществления процессов, и фиксируют локальные показатели эффективности работы для всех составляющих переделов, после завершения формирования архивов массивов входных воздействий, внутренних параметров процессов для всего наблюдаемого спектра технологических сортов руд и накопления необходимого объема информации осуществляют построение контрольных карт Шухарта. В случае нахождения обогатительного комплекса в целом в зоне статистической управляемости технологический режим оставляют без изменений. При отрицательном результате анализируют соответствие текущих показателей локальным критериям эффективности последовательно для всех переделов, для неэффективно работающих переделов сравнивают заданные значения контурам регулирования с формируемыми по алгоритму управления. В случае их совпадения сравнивают заданные значения контурам регулирования с текущими значениями параметров и при обнаружении отклонений формируют аварийное сообщение, а при отсутствии отклонений инициируют цикл скользящего обновления архивов. Технический результат - повышение эффективности автоматического контроля и управления процессом обогащения золотосодержащих руд. 6 з.п. ф-лы, 3 ил.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации сульфидных руд. Способ извлечения металлов из комплексного минерального рудного сырья включает измельчение сырья, флотацию с образованием флотационного потока концентрата минералов и флотационного потока отходов. Исходная минеральная масса, измельченная до крупности 50-55% класса - 74 мкм поступает в операцию основной флотации, с общим временем флотации 10-15 мин, осуществляемую дискретно. В качестве промежуточных процессов, временно прерывающих и разделяющих операцию флотации на стадии, используют операцию оттирки. Первая стадия флотации проводится в течение 2-3 мин, далее камерный продукт поступает в операцию оттирки в течение 2-3 мин. Разгрузка аппарата оттирки поступает во вторую стадию флотации, время флотации 3-5 мин, камерный продукт второй стадии флотации поступает во вторую стадию оттирки. Разгрузка аппарата оттирки поступает в третью стадию флотации, время флотации 4-7 мин. Технический результат - повышение эффективности и интенсификации процесса разделения сульфидных минералов и соответственно повышении качества и извлечения минералов в одноименные концентраты. 1 ил., 1 табл., 6 пр.

Изобретение относится к устройствам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Устройство автоматического контроля крупности частиц в потоке пульпы содержит чувствительный элемент 4, выполненный в виде микрометрического щупа 7, подпятник 13 микрометрического щупа 7, датчик величины перемещения и привод микрометрического щупа 7. Устройство дополнительно содержит управляющий контроллер, пневмораспределитель, накопительную емкость 1, переключающие клапаны, измерительную кювету 6, перекачивающий насос 17, причем привод микрометрического щупа 7 выполнен в виде бесштокового ленточного цилиндра, датчик величины перемещения микрометрического щупа 7 выполнен в виде микропроцессорного контактного измерительного датчика 14, выход которого соединен со входом усилителя 16 сигнала, накопительная емкость 1 содержит датчики 2 и 3 уровня и плотности пульпы. Измерительная кювета 1 выполнена в виде проточной емкости, внутри которой расположен подпятник 13 микрометрического щупа 7, а на внешней поверхности закреплен подпятник 15 микропроцессорного контактного измерительного датчика 14, при этом всасывающий патрубок перекачивающего насоса 17 соединен с впускным коллектором 18, 1-й вход которого соединен с клапаном на выходе накопительной емкости, 2-й вход коллектора соединен с выходом клапана магистрали забора пробы из технологической емкости, а нагнетающий патрубок перекачивающего насоса 17 соединен с выпускным коллектором 18, 1-й выход которого соединен с клапаном 25 сброса пульпы в дренаж из накопительной емкости 1, 2-й выход соединен с клапаном 26 подачи пробы на 1-й вход накопительной емкости, 3-й выход соединен с клапаном 27 подачи пробы в измерительную кювету 6, 2-й вход накопительной емкости 1 соединен с выходом измерительной кюветы 6, а 3-й вход накопительной емкости 1 соединен с выходом клапана 29 подачи воды. Управляющие выходы пневмораспределителя 30 соединены с соответствующими входами бесштокового ленточного цилиндра 31, измерительные входы контроллера 37 соединены с выходами датчиков уровня, плотности пульпы в накопительной емкости и усилителя сигнала микропроцессорного контактного измерительного датчика, а выходы контроллера 37 соединены с управляющими входами переключающих клапанов, пневмораспределителя и перекачивающего насоса 17. Технический результат - повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы за счет устранения влияния на результаты измерений загрязнения пульпы посторонними материалами и применения принципиально нового механизма - пневматического привода. 5 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам, предназначенным для проведения исследовательских работ, связанных с обогащением полезных ископаемых методом пенной флотации, и может быть использовано для исследования на обогатимость различных типов руд, а также самих процессов флотации в лабораторных условиях. Лабораторная флотационная машина содержит корпус, съемную камеру с приводом подъема, подвижную платформу, аэрационный узел, состоящий из импеллера, вала импеллера и статора, серводвигатель привода вала импеллера, редуктор, блок управления серводвигателем. Машина дополнительно содержит программируемый логический контроллер, сенсорную панель оператора, маршрутизатор беспроводной сети, микрокомпрессор сжатого воздуха, датчик расхода сжатого воздуха в аэрационный узел, клапан регулирования расхода сжатого воздуха в аэрациолнный узел, не менее двух микронасосов дозирования флотореагентов, устройство регулирования уровня пульпы во флотомашине, включающее вытеснительный конус с приводным механизмом, обсадную трубу, датчик уровня пульпы и воздушную форсунку подачи сжатого воздуха на обдув датчика уровня пульпы. Выходы датчиков расхода сжатого воздуха и уровня пульпы связаны с соответствующими входами программируемого логического контроллера. Выходы программируемого логического контроллера связаны с информационным входом сенсорной операторской панели и управляющими входами блока управления серводвигателя привода вала импеллера, микрокомпрессора сжатого воздуха, микронасосов дозирования флотореагентов, клапана регулирования расхода сжатого воздуха в аэрационный узел, приводного механизма вытеснительного конуса и привода подъема съемной камеры. Вход маршрутизатора беспроводной связи связан с интерфейсными выходами программируемого контроллера и сенсорной операторской панели. Съемная камера выполнена в виде сосуда в форме прямой восьмигранной призмы, содержащего не менее двух рукавов для отвода пены и карман для размещения датчика уровня пульпы во флотационной машине. Съемная камера выполнена или в виде цилиндра, или в виде усеченного конуса, или в виде прямоугольного параллепипеда. Технический результат - улучшение качества проведения экспериментов, а также повышение степени автоматизации работы машины. 4 з.п. ф-лы, 5 ил.

Группа изобретений относится к медицине, а именно к ортопедической стоматологии, и может быть использована при протезировании и для лечения больных с потерей зубов, а также при наличии заболеваний пародонта или предрасположенности к ним. Способ осуществляется поэтапно. На первом этапе выполняют терапевтическую подготовку протезируемых зубов. На втором этапе подготавливают корневые каналы под металлические культевые вкладки. Для этого выполняют частичную распломбировку корневых каналов на 1/2-2/3 длины канала, расширение корневых каналов на глубину распломбировки. Затем осуществляют снятие слепка для изготовления культевых вкладок. На третьем этапе изготавливают металлические культевые вкладки с фиксацией, методом литья или приварки или фиксацией на клей, в них по вертикальной оси,трубок с внутренней резьбой по центру культи. На четвертом этапе осуществляют фиксацию металлических культевых вкладок на стеклоиономерный цемент, при этом обязательно вставляют заглушку в резьбовое отверстие, выполненную из силикона или ваты, для предотвращения попадания цемента внутрь. На пятом этапе выполняют препарирование зубов под металлокерамические коронки. Затем осуществляют снятие слепка для изготовления временных пластмассовых коронок. Изготавливают и фиксируют временные пластмассовые коронки на цемент временной фиксации. На шестом этапе изготавливают индивидуальную пластмассовую слепочную ложечку с отверстиями в проекции резьбовых отверстий. На седьмом этапе осуществляют снятие слепка для изготовления металлокерамического мостовидного протеза. В резьбовые соединения вкручивают слепочные переходники, высотой 1-1.5 см, с шестигранной или восьмигранной головкой. Индивидуальной слепочной ложкой снимают двухслойный слепок из силиконовой слепочной массы. На восьмом этапе выполняют изготовление каркаса мостовидного протеза, но при этом формируют отверстия в проекции винтовых отверстий фиксированных в зубах вкладок. Затем осуществляют облицовку каркаса керамической массой. На девятом этапе проводят фиксацию готового мостовидного протеза к зубам на цемент для временной фиксации. Выполняют прикручивание их винтами к вкладкам. Затем излишки цемента удаляют после застывания. Винтовые отверстия в коронках заполняют композитным пломбировочным материалом. Для осуществления способа используют набор. Изобретения позволяют продлить срок службы мостовидного протеза и опорных зубов, не прибегая к распиливанию конструкции и ее утилизации, в случае возникновения проблем с опорными зубами или элементами протеза. 2 н.п. ф-лы, 8 ил.

Использование: для рентгеновского флуоресцентного анализа пульп обогатительного производства. Сущность изобретения заключается в том, что устройство для рентгеновского флуоресцентного анализа пульп обогатительного производства содержит пробозаборник, измерительную камеру, малогабаритный многоканальный рентгенофлюоресцентный анализатор, электронный блок обработки информации и управления устройством, при этом пробозаборник выполнен в виде аэролифта, а измерительная камера выполнена в виде проточной емкости с переливом, при этом устройство дополнительно содержит динамический сократитель пробы, перекачивающий насос, вакуум-линию, вакуумный насос, датчик вакуума, держатель пробы, состоящий из корпуса фильтр-патрона, закрепленного на подвижной тяге, содержащей на противоположном от корпуса фильтр-патрона конце зубчатую рейку, находящуюся в зацеплении с ведущей шестерней, насаженной на ротор шагового электродвигателя, управляемого контроллером, обжимной механизм, устройство также дополнительно содержит автоматические переключающие клапаны подачи воздуха в аэролифт, сброса пробы пульпы в дренаж из накопительной емкости, сброса пульпы в дренаж из циркуляционного контура подачи пробы пульпы в измерительную камеру, подачи воды на промывку накопительной емкости, подачи воды на обмыв валиков, автоматический трехходовой клапан переключения присоединения вакуум-линии к магистрали поддачи воды на промывку или к всасывающему входу вакуумного насоса. Технический результат: обеспечение возможности повышения точности выполнения анализов и надежности работы устройства. 5 з.п. ф-лы, 3 ил.

Изобретение относится к способу очистки оборотных вод предприятий цветной металлургии. Способ подготовки оборотной воды при флотационном обогащении включает дозировку реагентов для нейтрализации оборотной воды, осаждения тяжелых металлов и сульфгидрильных собирателей по электрохимическим параметрам оборотной воды. В потоке воды или пульпы измеряют разность потенциалов между двумя электродами, один из которых является молибденовым, а другой является или аргентитовым, или кадмиевым, или оловянным, или сурьмяным. По отклонению измеренной разности потенциалов по меньшей мере одной биметаллической пары от заданной оптимальной величины корректируют подачу реагентов. Для нейтрализации оборотной воды используют кислоту, например, серную кислоту, или щелочь, например известковое молоко, корректировку дозы которых осуществляют по разности потенциалов биметаллической пары, включающей кадмиевый и молибденовый электроды, таким образом, что при увеличении разности потенциалов Δ(Cd-Mo) увеличивают дозировку щелочи, а при уменьшении разности потенциалов Δ(Cd-Mo) снижают дозировку щелочи. В качестве реагента для осаждения тяжелых металлов применяют соли сероводородной кислоты и ее производные, например, Na2S, NaHS, корректировку дозы которой осуществляют по разности потенциалов биметаллической пары, включающей аргентитовый и молибденовый электроды, таким образом, что при увеличении разности потенциалов Δ(Ag2S-Mo) увеличивают дозировку реагента, а при уменьшении разности потенциалов Δ(Ag2S-Mo) снижают дозировку. В качестве реагента для осаждения сульфгидрильных собирателей применяют медный купорос, корректировку дозы которого осуществляют по разности потенциалов биметаллической пары, включающей аргентитовый и молибденовый электроды, таким образом, что при увеличении разности потенциалов Δ(Ag2S-Mo) уменьшают дозировку реагента, а при увеличении разности потенциалов Δ(Ag2S-Mo) уменьшают дозировку. При одновременной обработке воды для нейтрализации кислотности с помощью дозировки щелочи и осаждения тяжелых металлов с помощью солей сероводородной кислоты и ее производных используют три металлических электрода: аргентитовый, молибденовый и сурьмяный. Корректировка подачи щелочи осуществляется таким образом, что при увеличении разности потенциалов Δ(Sb-Mo) увеличивают дозировку щелочи, а при уменьшении разности потенциалов Δ(Sb-Mo) снижают дозировку щелочи. Корректировку расхода солей сероводородной кислоты и ее производных осуществляют таким образом, что при увеличении разности потенциалов Δ(Ag2S-Mo) увеличивают дозировку реагента, а при уменьшении разности потенциалов Δ(Ag2S-Mo) снижают дозировку реагента. Технический результат повышение точности и надежность подачи реагентов на оптимальном уровне, расход которых корректируется по измеренному электрохимическому потенциалу оборотной воды. 6 з.п.ф-лы, 12 ил., 8 табл., 3 пр.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации полиметаллических и медно-цинковых руд. Способ флотационного разделения коллективных цинково-пиритных концентратов включает получение коллективного цинково-пиритного концентрата из сульфидных руд, осуществляемое в щелочной среде, создаваемой известью, пропарку и кондиционирование пульпы с медным купоросом, ксантогенатом и вспенивателем, флотацию цинковых минералов в пенный продукт. Пенный продукт основной цинковой флотации поступает в цикл доизмельчения, включающий операцию классификации и операцию доизмельчения. В измельчение подается известь. Измельченный материал поступает в операцию сгущения и отмывки или в операцию механоактивации и далее в операцию сгущения и отмывки. Сгущенный продукт поступает в операцию оттирки и далее в перечистные операции. Технический результат - повышение эффективности и интенсификации процесса разделения цинково-пиритных концентратов. 2 ил., 1 табл., 3 пр.

Изобретение относится к флотационному обогащению полезных ископаемых и может быть использовано в угольной промышленности, черной и цветной металлургии на обогатительных фабриках, а также при обогащении неметаллического сырья. Флотационная пневматическая машина аэролифтного типа включает загрузочное устройство, камеру, разделенную на два отделения, наклонный пенный желоб, разгрузочное устройство и аэратор, расположенный в донной части камеры. Камера представляет собой емкость прямоугольного сечения, причем вертикальные боковые стенки ее параллельны друг другу, а часть фронтальной и задней стенки имеют наклон в сторону пенного желоба. Наклонная часть фронтальной стенки начинается от дна камеры и заканчивается на уровне загрузочного окна, а наклон задней стенки начинается выше уровня загрузочного окна. Камера разделена на транспортную зону и зону флотации наклонной составной перегородкой, состоящей из трех частей. Верхняя неподвижная часть перегородки размещена параллельно наклонной части задней стенки камеры, а верхняя кромка этой части перегородки размещена на уровне порога пенного желоба. Нижняя неподвижная часть составной перегородки параллельна вертикальной части задней стенки камеры, верхняя кромка нижней части перегородки размещена на высоте нижней части загрузочного окна, а нижняя кромка этой перегородки размещена с зазором над дном камеры. Верхняя кромка средней поворотной части перегородки соединена шарнирно с нижней кромкой верхней части составной перегородки, а нижняя кромка средней части перегородки размещена на высоте нижней части загрузочного окна. Камера дополнительно снабжена двумя решетками, размещенными в зоне флотации. Нижняя решетка установлена неподвижно, на уровне верхней кромки нижней части составной перегородки, а верхняя решетка выполнена двухрядной и закреплена на механизме перемещения с возможностью перемещения в зоне флотации. В верхней части машины, в ее пенном слое, с зазором относительно верхней стенки камеры установлена дополнительная неподвижная перегородка, нижняя кромка которой размещена ниже порога пенного желоба, а в пенном слое машины установлен с возможностью вертикального перемещения шибер, сопряженный с верхней неподвижной частью составной перегородки. Технический результат - повышение эффективности флотации путем повышения извлечения полезного компонента в концентрат. 1 з.п. ф-лы, 3 ил.

Использование: для анализа пульп и растворов в потоке. Сущность изобретения заключается в том, что автоматический рентгеновский анализатор пульп и растворов в потоке включает стойку с измерительными кюветами, спектрометрический блок с источником первичного рентгеновского излучения, детектором и анализатором вторичного рентгеновского излучения, механизм перемещения спектрометрического блока и систему автоматического управления, при этом спектрометрический блок выполнен герметичным, оснащен узлом термоэлектрической стабилизации температуры всех электронных компонентов спектрометрического блока, при этом в качестве детектора вторичного рентгеновского излучения используют полупроводниковый детектор с термоэлектрическим охлаждением, в качестве анализатора вторичного рентгеновского излучения используют многоканальный амплитудный анализатор импульсов, а в качестве источника первичного рентгеновского излучения используют малогабаритную рентгеновскую трубку рабочей мощностью до 10 Вт. Технический результат: расширение диапазона и количества одновременно определяемых элементов, повышение точности и достоверности анализа, повышение радиационной безопасности эксплуатации, уменьшение массогабаритных характеристик, уменьшение энергопотребления. 5 з.п. ф-лы, 7 ил.

Изобретение относится к системам аналитического контроля пульповых продуктов, растворов или суспензий в потоке, применяемых в горно-обогатительной и других отраслях промышленности. Автоматическая система включает автоматический пробоотборный комплекс 1, автоматический комплекс 10 циркуляционной пробоподачи и транспортные магистрали 30. Система дополнительно снабжена автоматическим комплексом 5 пробоподготовки, автоматическим комплексом 14 подготовки и подачи порошковых проб, аналитическим комплексом 20, комплексом 24 сетевого оборудования, центральной станцией 27 управления системой, серверами 28 системы, информационными магистралями 31. Выход пробоотборного комплекса 1 соединен с входом комплекса 5 пробоподготовки, который имеет два выхода, соединенные с комплексом 10 циркуляционной пробоподачи и комплексом 14 подготовки и подачи порошковых проб. Выходы комплекса 10 циркуляционной пробоподачи и комплекса 14 подготовки и подачи порошковых проб соединены с входами комплекса 20. Система управления каждого комплекса объединена в единую информационную сеть с центральной станцией 27 управления автоматической системой аналитического контроля и серверами 28 данной системы через комплекс сетевого оборудования. Комплекс 14 подготовки и подачи порошковых проб состоит из оборудования 15 подготовки порошковых проб, оборудования 16 шифровки/дешифровки порошковых проб, оборудования 17 перемещения порошковых проб, оборудования 18 хранения порошковых проб и устройства 19 управления комплексом. Комплекс 20 состоит из многокюветных поточных пульповых и порошковых анализаторов 22 и 21 физико-химических свойств проб и устройства 23 управления комплексом. Обеспечивается повышение эффективности системы путем повышения достоверности получаемой аналитической информации и расширения функциональных возможностей системы аналитического контроля пульповых продуктов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к способам контроля объёмного расхода и плотности пульпы в напорных трубопроводах и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля расхода и плотности пульпы в напорных трубопроводах включает измерение плотности по перепаду давления в восходящем потоке материала. Согласно изобретению на восходящей части напорного трубопровода выделяют два равновеликих участка, геометрические центры которых разнесены по ходу потока на величину, не превышающую 3 расстояния между нижней и верхней границами первого по ходу потока участка измерения. На нижней и верхней границах выделенных участков осуществляют отбор давления, для каждой пары границ участков измеряют перепады давлений, вычисляют взаимнокорреляционную функцию случайных сигналов, характеризующих изменение величин измеренных перепадов давлений во времени, находят абсциссу τ максимума взаимнокорреляционной функции, определяющую время взаимного сдвига по фазе полученных случайных сигналов. По величине расстояния между геометрическими центрами участков и времени τ определяют скорость потока и по известной площади внутреннего сечения трубопровода и найденной скорости потока вычисляют его расход. Технический результат - повышение надёжности и точности измерений расхода пульпы в закрытых трубопроводах за счёт устранения влияния на результаты измерений абразивного воздействия пульпы, физических свойств измеряемого материала и осуществления прямого измерения скорости потока. 3 ил.

Изобретение относится к обогащению полезных ископаемых методом флотации и может быть использовано при переработке сульфидных полиметаллических, медно-цинковых и свинцово-цинковых руд. Способ флотационного обогащения полиметаллических руд включает измельчение руды, введение модификаторов, депрессоров, собирателя, вспенивателя и выделение сульфидных минералов меди и свинца в пенный продукт. Для депрессии сульфидных минералов цинка используют сочетание сульфида натрия, цинкового купороса и пиросульфита натрия в соотношении (0.5÷1.5): (1÷3):0,5. Дополнительно проводят операцию флотации медно-свинцовой «головки». В качестве собирателя для сульфидных минералов меди и свинца используют селективный реагент на основе дитиофосфинатов. В цикле медно-свинцовых перечисток используют операцию оттирки. Технический результат - повышение эффективности депрессии минералов цинка в медно-свинцовом цикле флотации и в экологической безопасности процесса, интенсификация процесса селекции полиметаллических руд. 3 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации полиметаллических руд, медно-цинковых и других биметаллических руд. Способ флотационного обогащения сульфидных руд включает измельчение руды, осуществляемое в щелочной среде, создаваемой известью, кондиционирование пульпы с сернистым натрием и сульфатом цинка, введение собирателя и вспенивателя, флотацию сульфидов меди в пенный продукт. Измельченный продукт поступает в операцию контактирования с реагентами и далее в I межцикловую флотацию, камерный продукт которой после доизмельчения и контактирования с реагентами поступает во II межцикловую флотацию. Пенные продукты межцикловых операций после агитации с реагентами поступают в межцикловую перечистную операцию, пенный продукт которой представляет собой медный концентрат. Камерный продукт II межцикловой флотации после контактирования с реагентами поступает в I основную медно-свинцовую флотацию и после доизмельчения во II основную медно-свинцовую флотацию, пенные продукты которых, объединившись с пенным продуктом и камерным продуктом межцикловой перечистной операции, поступают после контактирования в цикл перечистных операций, концентрат которых представляет собой медно-свинцовый продукт - питание цикла одноименной селекции, а камерный продукт контрольной коллективной медно-свинцовой флотации является питанием цинк-пиритного цикла. Технический результат - повышение эффективности и интенсификации процесса флотации медно-свинцово-цинковых руд. 7 з.п. ф-лы, 1 ил., 1 табл., 8 пр.

Изобретение относится к обогащению полезных ископаемых методом флотации и может быть использовано при обогащении полиметаллических руд, в цикле селективной флотации медно-свинцового концентрата. Способ флотационного разделения коллективного медно-свинцового концентрата включает введение модификаторов, депрессоров, собирателя и выделение сульфидных минералов меди в пенный продукт, а минералов свинца - в камерный продукт. Для депрессии сульфидных минералов свинца используют сочетание железного купороса, пиросульфита натрия и полисахаридов в соотношении (0,5÷1,5):(1÷2):0,1. Перед флотационным разделением коллективного медно-свинцового концентрата проводят операцию десорбции в присутствии сульфида натрия и активированного угля. Операцию десорбции в присутствии сульфида натрия и активированного угля проводят в оттирочном комплексе. После операции десорбции проводят обработку пульпы технической водой для очистки материала от сорбентов. Флотационное разделение коллективного медно-свинцового концентрата проводят в кислой среде, создаваемой серной кислотой. В качестве собирателя для сульфидных минералов меди используют селективный реагент на основе модифицированного тионокарбомата. Технический результат - повышение эффективности флотационного разделения коллективного медно-свинцового концентрата. 6 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации полиметаллических руд. Способ флотационного разделения коллективных медно-свинцовых концентратов включает получение коллективного медно-свинцового продукта из сульфидной руды, осуществляемое в щелочной среде, создаваемой известью, контактирование пульпы с сульфитом натрия или с сульфитом натрия и железным купоросом и медную флотацию. Коллективный медно-свинцово продукт поступает в операцию механоактивации, далее продукт поступает в операцию сгущения и отмывки в сгустителе. Разгрузка сгустителя поступает в цикл обработки реагентами, включающий операции агитации в присутствии серной кислоты, введение депрессора и собирателя. Подготовленный материал поступает на основную медную флотацию, камерный продукт которой поступает в операцию агитации в присутствии депрессора и собирателя, подготовленный материал поступает в контрольную флотацию. Пенный продукт основной флотации поступает в перечистной цикл, включающий операции агитации в присутствии депрессора и собирателя, получаемый пенный продукт перечистного цикла является медным концентратом, а камерный продукт контрольной медной флотации является свинцовым концентратом. В качестве собирателя в агитации перед медной флотацией используется тионокарбамат, а в качестве депрессора сульфит натрия. В качестве собирателя в агитации перед медной флотацией используется тионокарбамат, а в качестве депрессора смесь сульфит натрия и железного купороса в соотношении: массовая доля сульфита натрия : массовая доля железного купороса 2:1. В качестве собирателя в агитации перед медной флотацией используется тионокарбамат, а в качестве депрессора дополнительно к сульфиту натрия и железному купоросу используют крахмал в соотношении: массовая доля сульфита натрия : массовая доля железного купороса : массовая доля крахмала 2:1:2. В качестве собирателя в агитации перед медной флотацией используется тионокарбамат, а в качестве депрессора дополнительно к сульфиту натрия используют марганцовокислый калий и цинковый купорос в соотношении: массовая доля марганцовокислого калия : массовая доля сульфита натрия : массовая доля цинкового купороса 3:2:1, при этом диапазон отклонения не более 10% отн. Сернокислотная обработка производится при подогреве пульпы до температуры 40÷50°C. Технический результат - повышение эффективности и интенсификации процесса разделения медно-свинцовых концентратов и соответственно повышение качества и извлечение минералов меди и свинца в одноименные концентраты. 5 з.п. ф-лы, 1 ил., 1 табл., 6 пр.

Изобретение относится к устройствам автоматического дозирования флотореагентов и других жидких компонентов в технологический процесс и может быть использовано в области обогащения руд полезных ископаемых, а также в горнометаллургической, строительной и других отраслях промышленности. Заявленное устройство автоматического дозирования флотореагентов включает дозатор, блок управления, трубопроводы, управляющий и отсечной клапаны, при этом дополнительно содержит мерную емкость, имеющую в нижней части выпускной трубопровод с отсечным клапаном, а в верхней - датчик верхнего уровня, при этом дозатор закреплен на неподвижно установленном тензорезисторе, выход управляющего клапана через питающий трубопровод и гибкую вставку соединен с питающим входом в дозатор, нижняя часть дозатора имеет выпускной патрубок со встроенным дросселем, при этом входы блока управления соединены с сигнальными выходами тензорезистора и датчика верхнего уровня, а выходы - с управляющими входами управляющего и отсечного клапанов. Технический результат заключается в повышении надежности и точности регулирования расхода жидкости за счет устранения влияния изменения ее физических свойств путем контроля фактического расхода, а также благодаря наличию возможности автоматической градуировки дозатора. 4 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам контроля проб жидких и пульповидных материалов на обогатительных фабриках черной или цветной металлургии и других производствах, где необходим периодический контроль жидкого технологического продукта для анализа элементного состава. Автоматический комплекс циркуляционной пробоподачи включает зумпф 2, насос 1, проточную измерительную кювету 3, установленную выше уровня пробы в зумпфе 2, клапан 5 подачи воды, клапан 6 сброса пробы. В комплексе используется перистальтический насос 1. Вход насоса 1 соединен с проточной измерительной кюветой 3 через дополнительно установленный компенсатор 4 пульсаций. Зумпф 2 расположен над перистальтическим насосом 1. Трубки, соединяющие проточную измерительную кювету 3 с зумпфом 2 и насосом 1 через компенсатор 4 пульсации, выполнены под углом от 30 до 80 градусов к горизонтальной поверхности. Обеспечивается повышение надежности работы комплекса и точность анализа элементного состава проб. 1 з.п. ф-лы, 2 ил.

Изобретение относится к обогащению полезных ископаемых, а именно к устройству для контроля потоков пульпы при осуществлении автоматического управления технологическими процессами флотации. Устройство для автоматического контроля потока пульпы содержит входной сужающийся патрубок 1 и плотномер 2. Дополнительно устройство включает турбулятор 3, U-образную трубу 4, выходной расширяющийся патрубок 5, вакуумный пробоотборник 6, анализатор 7 элементного состава, объемный расходомер 8, сбросной клапан 9 и управляющее устройство 10. Входы управляющего устройства 10 соединены с выходами объемного расходомера 8 и плотномера 2, а выходы управляющего устройства 10 соединены с управляющими входами вакуумного пробоотборника 6 и сбросного клапана 9. При этом турбулятор расположен между входным сужающимся патрубком и нисходящей ветвью U-образной трубы, объемный расходомер и плотномер установлены на восходящей ветви U-образной трубы, а вакуумный пробоотборник и сбросной клапан установлены на нижней части U-образной трубы. Достигаемый технический результат заключается в повышении надежности и точности контроля за счет создания турбулентности потока и условий для корректной работы компонентов устройства, а также обеспечения отбора представительных проб независимо от изменения величины потока. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области обогащения полезных ископаемых, в частности к способам автоматического управления процессом флотации, и может быть использовано для оптимизации процессов обогащения руд черных и цветных металлов. Способ автоматического контроля и управления процессом флотации включает разбиение процесса флотации на контуры управления, измерение параметров вещественного состава руды, измерение входных воздействий и внутренних параметров процесса флотации, оценку сортности руды, формирование на основе полученных данных архива информации, характеризующей эффективность производственного процесса для различных сортов руды, идентификацию текущего массива данных с имеющимися архивными данными для сортов руды, аналогичных текущему и обеспечивающих достижение заданных критериев эффективности, и формирование на основе этой процедуры заданий локальным системам регулирования. Для каждого контура управления в моменты достижения критериев эффективности в целом для передела флотации для выделенного сорта руды фиксируют локальные критерии эффективности, формируют отдельно архивы данных для каждого контура. После завершения процесса формирования архивов данных оценивают сорт руды, поступающий на переработку, устанавливают факт достижения заданных критериев эффективности в целом для передела флотации, в случае достижения положительных результатов задания локальным системам регулирования оставляют без изменений, а при отрицательном результате оценивают эффективность работы локальных контуров управления. В случае обнаруженных неэффективно работающих контуров идентифицируют относящиеся к ним массивы данных с имеющимися в архивах для сортов руды, аналогичных текущему, и формируют на основе этой процедуры задания входящим в их состав системам регулирования. Архивы информации формируют из скалярных величин, получаемых в результате цифрового кодирования параметров векторов, характеризующих наблюдаемые ситуации. Запись данных в архивы производят таким образом, что после накопления информации за установленный промежуток времени осуществляют обновление архивов путем записи на место информации, соответствующей первым по времени циклам измерений, результатов последних измерений, описывающих ситуации, сложившиеся на моменты достижения заданных значений критериев эффективности. Дополнительно используют в качестве внутренних параметров информацию, характеризующую механический износ технологического оборудования и величину циркуляционных потоков локальных контуров флотации. Технический результат - повышение эффективности автоматического контроля и управления процессом флотации за счет повышения точности и надежности вычисления оптимальных значений управляющих воздействий. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при флотации цветных, черных, редких и благородных металлов, а также неметаллических полезных ископаемых. Устройство для перекачки пенного продукта флотационного передела содержит зумпф и насос. Зумпф выполнен в виде конической емкости с тангенциальными подводом пенного продукта и отводом пульпы в насос и снабжен патрубками для ввода пенного продукта и для соединения с насосом. Дном конической емкости является ее меньшее основание. В центе дна емкости расположен усеченный конус, установленный меньшим основанием вверх. На внутренней боковой поверхности конической емкости размещена футеровка с выступами, выполненная из износостойкого материала. Нижняя сторона футеровки расположена на уровне верхнего основания усеченного конуса, расположенного в центре дна зумпфа, а по центру зумпфа, на расстоянии от дна, равном 0,5÷0,7 высоты зумпфа, установлено открытое лопастное колесо с верхним и нижним расположением лопаток. Направление вращения лопастного колеса совпадает с направлением вращения потока пульпы. Патрубок для ввода пенного продукта расположен выше нижних кромок лопаток колеса. Выступы имеют переменную ширину по высоте боковой поверхности конической емкости зумпфа, при этом ширина выступа в верхней части в 3÷5 раз больше ширины в его нижней части. Технический результат - повышение эффективности, производительности работы устройства для перекачки пенного продукта флотационного передела и снижение энергозатрат. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Причем осуществляют программное управление приводом механизма ощупывания для обеспечения стабилизации длительности цикла возвратно-поступательного движения механизма ощупывания и синхронизации положения микрометрического щупа в момент измерения с циклом опроса вычислительным устройством величины электрического сигнала. При этом ощупывание частиц материала осуществляют мультиэлементным микрометрическим щупом, содержащим "n" независимых чувствительных элементов, обеспечивающих одновременное ощупывание "n" частиц и преобразование измеренных величин частиц в "n" электрических сигналов, пропорциональных их абсолютным размерам. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы за счет устранения влияния на результаты измерений колебаний параметров питающей сети и ускорения процесса измерений. 3 ил.

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при флотации цветных, черных, редких и благородных металлов, а также неметаллических полезных ископаемых. Устройство для перекачки пенного продукта флотационного передела содержит зумпф и насос, зумпф снабжен патрубками для ввода пенного продукта и для соединения с насосом. Зумпф выполнен в виде конической емкости с радиальными пластинчатыми сетчатыми отбойниками и с тангенциальными подводом пенного продукта и отводом пульпы в насос. Дном конической емкости является ее меньшее основание. В центре дна емкости расположен усеченный конус, установленный меньшим основанием вверх. Нижняя сторона пластинчатого сетчатого отбойника расположена на уровне верхнего основания усеченного конуса. Патрубок для ввода пенного продукта установлен в боковой стенке емкости на высоте от дна 0,1÷0,7H, где H - высота зумпфа, а патрубок для соединения с насосом расположен в нижней части конической емкости по ходу потока пульпы, ниже верхнего основания усеченного конуса. Внутренний диаметр патрубка для соединения с насосом равен внутреннему диаметру патрубка для ввода пенного продукта. Диаметр нижнего основания усеченного конуса составляет 0,3÷0,5 диаметра меньшего основания конической емкости. Технический результат - повышение эффективности, производительности работы устройства для перекачки пенного продукта флотационного передела и снижение энергозатрат. 1 з.п. ф-лы, 2 ил.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации. Способ флотационной переработки текущих и лежалых хвостов обогащения, содержащих минералы меди и молибдена, включает селекцию медь- и молибденсодержащих минералов после окислительно-тепловой обработки пульпы с флотацией молибденита в щелочной среде, создаваемой сернистым натрием. Исходную минеральную массу подвергают механоактивации в оттирочном комплексе, после чего отмывают при соотношении вода:твердое 5:1÷10:1. Далее последовательно извлекают молибденовый концентрат с предварительным подогревом пульпы до 40-60°C острым паром в присутствии сернистого натрия, аполярного собирателя и вспенивателя, медный концентрат с предварительным доизмельчением камерного продукта молибденовой флотации и флотацией в щелочной среде, создаваемой известью, в присутствии собирателя Aero-МХ 5140 и вспенивателя, пиритный концентрат после предварительных операций сгущения и десорбции камерного продукта медной флотации, флотации в кислой среде, создаваемой серной кислотой в присутствии сульфгидрильного собирателя и вспенивателя, и с получением вторичных хвостов камерным продуктом пиритной флотации. Технический результат - повышение эффективности процесса разделения, а также извлечения металлов в концентраты, снижение энергозатрат. 2 ил., 2 табл., 11 пр.

Способ автоматического измерения расхода пульпы в открытых каналах включает измерение скорости и высоты потока материала, причем скорость потока пульпы определяют по скорости вращения полого мерного колеса, выполненного в виде свободно подвешенного поплавка и приводимого в движение силой сцепления рельефной поверхности колеса с верхним слоем потока пульпы. Устройство для автоматического измерения расхода пульпы в открытых каналах содержит вычислительный блок, приспособление для измерения скорости потока и уровнемер. Указанное приспособление для измерения скорости потока выполнено в виде полого мерного колеса, при этом ось вращения мерного колеса подвижно закреплена во втулках, расположенных на нижнем конце вильчатого рычага, на котором дополнительно установлены форсунки для подачи воды, а на верхнем конце вильчатого рычага горизонтально размещена отражающая площадка. Ось вращения мерного колеса связана с крыльчаткой датчика импульсов. Вильчатый рычаг при помощи параллелограммного механизма закреплен на неподвижной Г-образной стойке. Технический результат - повышение надежности и точности измерений расхода пульпы в открытых каналах за счет устранения влияния на результаты измерений абразивного воздействия пульпы и физических свойств измеряемого материала. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к способам автоматического контроля крупности дробленой руды в потоке и может быть использовано в области обогащения руд полезных ископаемых, в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности дробленой руды в потоке включает определение гранулометрического состава в потоке материала на основе показаний датчика, выходной сигнал которого подают на анализатор спектра и затем преобразуют в сигнал, пропорциональный содержанию отдельных фракций крупности материала. В качестве датчика применяют уровнемер 3. Лучом уровнемера 3 осуществляют сканирование поверхностного слоя потока материала 6, определяют линию, огибающую поверхностный слой материала, вычисляют скользящее среднее значение сигнала уровнемера, вычисляют абсолютные значения площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера. Вычисляют статистическое распределение относительных частот наблюдения равных по величине вычисленных абсолютных значений площадей фигур на интервале измерения и по полученной заранее градуировочной зависимости крупности отдельных фракций от величины абсолютных значений площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера, вычисляют распределение фракций крупности дробленой руды в потоке, также измеряют скорость движения потока материала и абсолютные значения площадей фигур, образованных пересечением линии, огибающей поверхностный слой материала, с линией скользящего среднего значения сигнала уровнемера, умножают на коэффициент, равный отношению измеренной скорости к скорости, соответствовавшей условиям градуировки. Технический результат - повышение надежности и точности контроля крупности дробленой руды в потоке за счет устранения влияния на результаты измерения колебаний величины и скорости движения потока материала. 1 з.п. ф-лы, 5 ил.

Изобретение относится к весовым дозаторам, осуществляющим дозированную подачу материалов, и может быть использовано в горной, химической, строительной и других отраслях промышленности. Техническим результатом изобретения является повышение надежности и точности дозирования шаров. Устройство весового дозирования шаров состоит из приемного бункера, вибратора, весового ковша с запорным устройством, тензорезистора и блока управления. При этом оно дополнительно содержит счетчик шаров и ленточный конвейер, установленный между вибратором и весовым ковшом. Запорное устройство весового ковша выполнено в виде вращающегося барабана, приводимого в движение с помощью пневмоцилиндра с храповым механизмом. На поверхности барабана имеются соосные кольцевые направляющие канавки полуовального профиля, ширина которых на 10-15% превышает диаметр дозируемых шаров, отстоящие друг от друга на равные расстояния. На дне канавок расположены сферические углубления, объем которых достаточен для удержания шаров на наклонной плоскости, а линии геометрических центров сферических углублений проходят под углом 10-30 градусов по отношению к образующим барабана. 5 ил.

Изобретение относится к способам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности. Способ автоматического контроля крупности частиц в потоке пульпы включает периодическое ощупывание частиц материала микрометрическим щупом с преобразованием величины частиц, зафиксированных механизмом ощупывания, в электрический сигнал, пропорциональный их абсолютному размеру. Для чего отбирают пробу пульпы, фильтруют, направляют в кондиционирующую емкость. Затем измеряют плотность пробы в кондиционирующей емкости. При этом разбавляют пробу пульпы водой до состояния, обеспечивающего получение монослоя частичек материала при фиксировании их микрометрическим щупом. Затем производят прокачку разбавленной пробы в режиме циркуляции по контуру, включающему кондиционирующую емкость и камеру измерения. После чего осуществляют измерение крупности частичек материала в циркулирующем потоке, проходящем через камеру измерения, в течение периода времени, длительность которого задается по результатам предварительной калибровки, и производят вычисление содержания контролируемого класса по результатам измерения содержаний промежуточных классов крупности. Техническим результатом является повышение надежности и точности измерений гранулометрического состава материала в потоке пульпы. 4 ил.

Изобретение касается обогащения полезных ископаемых и относится к устройствам для распределения потоков пульпы между отдельными потребителями в обогатительной, химической, строительной и других отраслях промышленности. Устройство для автоматического контроля и распределения потоков пульпы содержит пульподелитель с выходными отводами и установленными на них исполнительными механизмами регулирования расхода. Каждый выходной отвод пульподелителя дополнительно содержит расходомер. Выход каждого расходомера и вход каждого исполнительного механизма регулирования расхода соединены, соответственно, с первым входом и с первым выходом соответствующих каналов дополнительно установленного многоканального регулирующего контроллера. Каждый канал содержит задатчик текущего расхода пульпы, выход которого соединен со вторым входом многоканального регулирующего контроллера. Устройство содержит расходомер пульпы на входе в пульподелитель, датчик содержания полезных компонентов и датчик физико-химических свойств перерабатываемой руды, выходы которых соединены, соответственно, с 1-м, 2-м и 3-м входами дополнительно установленного функционального блока, при этом выходы последнего соединены с суммирующими входами соответствующих задатчиков. Технический результат - повышение точности распределения потоков пульпы между параллельно работающими линиями в условиях изменения за счет абразивного износа геометрических параметров элементов регулирования расходов пульпы на выходе из пульподелителя и больших колебаний качественных характеристик перерабатываемой руды. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для очистки и обогащения зернистых материалов и может быть использовано при подготовке для дальнейшей обработки руд, в которых полезный компонент находится либо в оболочке, либо в ядре зерен минералов. Технический результат, на достижение которого направлено настоящее изобретение, заключается в повышении эффективности оттирки пленок с поверхности зернистых материалов при изменении качественно-количественных характеристик перерабатываемого материала. Указанный технический результат достигается тем, что автоматизированный оттирочный комплекс, включающий оттирочную машину, содержащую камеру 1, размещенное на валу 2 перемешивающее устройство с электроприводом 3 и питающий насос 4, дополнительно содержит объемный расходомер 7 и плотномер 8 на входе в оттирочную машину. Устройство также содержит датчик 9 мощности, потребляемой электроприводом вала перемешивающего устройства, регулируемый питатель 10 реагентов, датчик 11 ионного состава пульпы на выходе из оттирочной машины, питатель 12 подачи гранулированного материала, регулируемый привод 13 питателя 12 подачи гранулированного материала 5, датчик шума 15 в зоне соударения гранулированного материала с корпусом камеры 1 оттирочной машины и многоканальный программируемый контроллер 14. Выходы автоматических датчиков соединены со входами многоканального программируемого контроллера 14, а управляющие выходы контроллера 14 соединены со входами соответствующих регулируемых исполнительных механизмов. Предложенный автоматизированный оттирочный комплекс позволяет повысить эффективность оттирки пленок с поверхности зернистых материалов, за счет управления режимом работы оборудования в зависимости от количества продукта, поступающего на переработку, и с учетом качества оттирки, оцениваемого по физико-химическим характеристикам пульпы на выходе из оттирочной машины. 1 ил.

Изобретение относится к обогащению полезных ископаемых способом флотации и может быть использовано при переработке рудного или нерудного сырья

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке сульфидных медно-никелевых руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации медно-молибденовых руд, медно-никелевых и других биметалльных руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке сульфидных медно-никелевых руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации медно-молибденовых руд, медно-никелевых и других биметальных руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке сульфидных медно-никелевых руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации медно-молибденовых руд, медно-никелевых и других биметалльных руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при доводке магнетитовых концентратов

Изобретение относится к способам для очистки и обогащения зернистых материалов и может быть использовано при подготовке для дальнейшей обработки руд, в которых полезный компонент находится либо в оболочке, либо в ядре зерен минералов

Изобретение относится к устройствам для очистки и обогащения зернистых материалов и может быть использовано при подготовке для дальнейшей обработки руд, в которых полезный компонент находится либо в оболочке, либо в ядре зерен минералов

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке шламов текущей добычи сульфидных вкрапленных и сплошных полиметаллических или медно-цинковых руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке лежалых шламов сульфидных полиметаллических или медно-цинковых руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при доводке магнетитовых концентратов

Изобретение относится к обогащению полезных ископаемых и может быть использовано при доводке магнетитовых концентратов

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации медно-молибденовых руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации медно-молибденовых руд

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации медно-молибденовых руд

Изобретение относится к горной промышленности и может найти применение при флотации песков гидроциклона

 


Наверх