Патенты автора Цветников Александр Константинович (RU)

Изобретение относится к исследовательской технике. Сущность: на поверхность конуса наносят покрытие, погружают конус в воду или солевой раствор, находящиеся в конической ёмкости, после чего замораживают в термостате, устанавливают в зажимы универсальной разрывной машины и определяют усилие отрыва конуса с нанесённым покрытием от льда. Конус выполняют из сплава алюминия, причём до нанесения на поверхность конуса покрытия предварительно очищенную поверхность конуса из сплава алюминия подвергают электролитическому оксидированию в электролите, содержащем, г/л: 15-25 Na2SiO3·5Н2О и 1-2 NaOH, в режиме плазменных микроразрядов в монополярном гальваностатическом режиме при плотности тока 0,3-1,0 А/см2 и коэффициенте заполнения поляризующего сигнала 50%. Исследовательский модуль содержит конус, выполненный с возможностью нанесения на него покрытия, и коническую ёмкость. Конус выполнен из сплава алюминия, причём предварительно очищенная поверхность конуса из сплава алюминия обработана с помощью электролитического оксидирования в электролите, содержащем, г/л: 15-25 Na2SiO3·5Н2О и 1-2 NaOH, в режиме плазменных микроразрядов в монополярном гальваностатическом режиме при плотности тока 0,3-1,0 А/см2 и коэффициенте заполнения поляризующего сигнала 50%. Технический результат: возможность уменьшить количество опытов для статистической достоверности результатов оценки адгезии льда к лакокрасочным и порошковым покрытиям. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области гальванотехники и может найти применение при формировании покрытий, обеспечивающих защиту от влаги и снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия, легированных магнием, в атмосфере с высокой влажностью и препятствующих их обледенению в зимнее время. Способ включает плазменно-электролитическое оксидирование (ПЭО) изделия при его анодной поляризации в электролите, содержащем, г/л: тартрат калия C4H4O6K2⋅0,5H2O 10-30 и фторид натрия NaF 0,6-2,0, в гальваностатическом режиме при плотности анодного тока 150-160 А/дм2, росте анодного напряжения от 10-30 до 330-340 В в течение 1,5-3,0 мин, причем в ходе первой минуты напряжение увеличивают до возникновения микроразрядов на оксидируемой поверхности, изделие с ПЭО-покрытием выдерживают в сушильном шкафу при температуре 250-280°С в течение 1-3 минут, сразу после этого погружают на 1-2 минуты в расплав ультрадисперсного политетрафторэтилена при температуре 310-330°С на границе его перехода в твердое состояние, вынутое из расплава изделие сушат при температуре 250-280°С и в течение 1,5-2,0 часов снижают температуру до комнатной. Технический результат - упрощение способа и его аппаратурного оформления, уменьшение трудозатрат и расхода электроэнергии на его осуществление и снижение себестоимости производимых покрытий при одновременном обеспечении их высоких защитных качеств. 1 з.п. ф-лы, 4 пр., 2 ил.

Изобретение относится к области гальванотехники и может быть использовано при формировании композиционных полимерсодержащих покрытий для защиты от коррозии изделий и конструкций, эксплуатируемых в неблагоприятных погодных условиях, в частности в открытом море на нефтяных платформах, в судостроении, где сварные алюминиевые лодки и катера изготавливают исключительно из этих сплавов, в автомобилестроении для изготовления штампованных деталей корпуса и шасси. Способ включает плазменно-электролитическое оксидирование ПЭО изделия в электролите, содержащем, г/л: фторид натрия NaF 0,6-2,0 и тартрат калия C4H4O6K2⋅0,5H2O 10-30, процесс ПЭО осуществляют в монополярном режиме при анодной поляризации оксидируемой поверхности, при этом плотность анодного тока поддерживают постоянной 150-160 А/дм2, анодное напряжение в течение 2,5-3,0 мин поднимают от 10-30 В до 420-440 В, а затем на сформированный ПЭО-слой наносят политетрафторэтилен из его расплава при температуре 310-330°С путем погружения обрабатываемого изделия с выдержкой в расплаве в течение 1-2 мин, после чего изделие с покрытием сушат в сушильном шкафу при постепенном снижении температуры до комнатной. Технический результат: увеличение устойчивости формируемых покрытий к истиранию при одновременном обеспечении их высокой коррозионной стойкости, упрощение способа, повышение его технологичности, сокращение затрат времени и электроэнергии на его осуществление. 2 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к средствам исследования свойств защитных покрытий на субстратах, подвергающихся воздействию морской среды, а именно к способам оценки противообрастающих и антикоррозийных покрытий подводной части корпуса судов, а также к установкам для их осуществления. Способ включает оценку свойств защитных покрытий и их изменения при эксплуатации с использованием в качестве основной характеристики покрытия его электросопротивления, при этом навигационные условия для разных участков подводной части судна моделируют, регулируя скорость этих потоков с помощью испытательной камеры в виде кольцеобразной емкости с переменным сечением, в которой размещены тестируемые образцы. Сечение кольцеобразной емкости рассчитано таким образом, что скорость обтекания тестируемых образцов пропускаемым через испытательную камеру потоком морской воды полностью соответствует скорости обтекания морской водой в навигационных условиях участков подводной части корпуса судна, выбранных для исследования. Установка помимо испытательной камеры, содержит водовод для проточной морской воды с клапанами ее подачи и отвода, дренажную отводящую трубу; узел подводного водозабора морской воды с насосной станцией и снабжена маршевым гребным винтом, связанным с электродвигателем и блоком управления. Технический результат заключается в упрощении способа и сокращении времени, затрачиваемого на его осуществление, за счет моделирования навигационных условий для различных исследуемых участков корпуса судна одновременно, в одном рабочем объеме; упрощении установки для осуществления способа, обеспечении круглогодичных исследований. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способу обработки магниевых сплавов, а именно к композиционным покрытиям, формируемым сочетанием плазменного электролитического оксидирования и распыления фторполимера, и может быть применено в машиностроении, в том числе автомобильной промышленности, приборостроении, самолётостроении и производстве космической техники, а также медицине. Способ включает получение защитных композиционных покрытий на сплаве магния, плазменно-электролитическое оксидирование для получения пористого слоя и формирование слоев фторполимера распылением суспензии ультрадисперсного политетрафторэтилена в изопропиловом спирте. Снижается пожароопасность, упрощается процесс. 2 з.п. ф-лы, 2 ил.

Изобретение относится к противообрастающим покрытиям, предназначенным для защиты бетонных и железобетонных поверхностей, эксплуатируемых в водной среде, и может быть использовано для защиты водоводов технического водоснабжения ТЭЦ, а также портовых и гидротехнических сооружений. Описано многослойное противообрастающее покрытие, содержащее грунтовочный слой, промежуточный слой, выполненные на основе эпоксидной смолы и отвердителя аминного типа, и наружный самополирующийся биоцидный слой, в котором в грунтовочном и промежуточном слоях в качестве основы использована эпоксидная диановая смола, модифицированная каменноугольной смолой, содержащей (% по массе): фенолы 8-18, парафины и олефины 4-12, нейтральные кислородные соединения 20-30, карбоновые кислоты 1-2, пиридиновые основания 1-3, ароматические углеводороды 22-34, и введен водорастворимый растворитель, сольватирующая способность которого не меньше, чем у воды, в промежуточный слой, кроме того, введен железный сурик, а наружный самополирующийся слой выполнен на основе акрилатов меди с добавлением нанодисперсного низкомолекулярного политетрафторэтилена. Технический результат изобретения – получено противообрастающее покрытие с повышенной эффективностью защиты от обрастания бетонных и железобетонных поверхностей, эксплуатируемых в пресной и морской воде. 4 табл.

Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив и т.п. Борфторсодержащая энергоемкая композиция для энергетических конденсированных систем содержит в качестве горючего додекагидро-клозо-додекаборат хитозана (C6O4H9NH3)2B12H12 и в качестве кислородного окислителя перхлорат хитозана C6O4H9NH3ClO4 и дополнительно содержит ультрадисперсный политетрафторэтилен (УПТФЭ) в количестве, обеспечивающем полноту и скорость перехода бора боргидридного соединения в оксофторид бора (BOF)3. Композицию получают смешением влажного свежеосажденного додекагидро-клозо-додекабората хитозана, водного геля перхлората хитозана и УПТФЭ в виде этанольной дисперсии в соответствующем количестве до однородного геля, при этом оптимальное мольное соотношение додекагидро-клозо-додекаборат хитозана : перхлорат хитозана : УПТФЭ равно 1:1:3. Изобретение обеспечивает получение гомогенных борфторсодержащих энергоемких композиций, отличающихся полнотой сгорания и перспективных для использования их в качестве высококалорийных компонентов ЭКС. 2 н. и 4 з.п. ф-лы, 7 пр.

Изобретение относится к получению многофункциональных защитных покрытий на лакокрасочной основе, обладающих водоотталкивающими, антифрикционными, противоизносными, противообрастающими свойствами, и может быть использовано в судостроении и судоремонте, в строительстве при возведении металлических конструкций и сооружений, в различных областях машиностроения. Способ заключается в нанесении на подложку лакокрасочного материала (ЛКМ) и наноструктурированного политетрафторэтилена (ПТФЭ), полученного термодеструкцией фторопласта-4 с последующей конденсацией из газовой фазы. Наноструктурированный порошок ПТФЭ вводят непосредственно в лакокрасочный материал в виде дисперсии в ксилоле в количестве 1-40% от веса сухого ЛКМ, либо наносят путем натирания на поверхность ЛКМ после его отверждения. Обеспечивается повышение срока службы лакокрасочных покрытий и расширение спектра их защитных функций. 2 н.п. ф-лы, 3 ил., 1 табл., 11 пр.

Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив. Борфторсодержащая энергоемкая композиция содержит в качестве горючего интеркалированное соединение оксида графита с додекагидро-клозо-додекаборатным соединением при их мольном соотношении 1 к (0.1-0,3) и в качестве окислителя - ультрадисперсный политетрафторэтилен (УПТФЭ) в количестве, обеспечивающем полноту и скорость перехода бора боргидридного соединения в оксофторид бора (BOF)3, при этом додекагидро-клозо-додекаборатное соединение представляет собой аммонийную соль додекагидро-клозо-додекаборат аммония (NH4)2B12H12. Композицию получают смешением горючего в виде водного геля оксида графита и водного раствора додекагидро-клозо-додекабората аммония при их мольном соотношении 1 к (0,1-0,3) с окислителем – УПТФЭ в виде этанольной дисперсии в соответствующем количестве до однородного геля. После чего полученную смесь сушат до постоянной массы. Изобретение обеспечивает упрощение способа и получение термически более устойчивой энергоемкой композиции. 2 н.п. ф-лы, 4 пр.
Изобретение может быть использовано в промышленном синтезе катодных материалов для литиевых химических источников тока высокой энергоемкости. Древесину измельчают до размера частиц менее 2 мм и сушат в потоке сухого азота при 120-130°С. Затем реактор с измельченной и высушенной древесиной вакуумируют до давления не более 0,1 кг/см2, заполняют смесью фтора и азота в объемном соотношении 1:(3-5) до атмосферного давления и фторируют древесину при температуре 80-120°С и постоянном перемешивании. Окончание реакции контролируют по понижению температуры реактора на 5-10°С. Повышается безопасность способа получения катодного материала для химических источников тока, исключается необходимость очистки получаемого материала от токсичных реагентов, упрощается аппаратурное оформление процесса. Полученный катодный материал имеет повышенную энергоемкость и электропроводность, снижается его себестоимость. 4 пр.

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в пищевой промышленности, в условиях морского климата. Способ включает плазменно-электролитическое оксидирование (ПЭО) металлической поверхности в электролите, содержащем растворимые соли органических и неорганических кислот, с получением слоя оксидной керамики и последующее нанесение политетрафторэтилена (ПТФЭ) с термической обработкой полученного покрытия, при этом ПЭО осуществляют в биполярном режиме, ПТФЭ наносят с помощью электрофореза из его водной дисперсии, дополнительно содержащей додецилсульфат натрия и ОП-10 при следующем содержании компонентов, г/л: ПТФЭ с размером частиц, не превышающим 1 мкм 10-30, додецилсульфат натрия 0,1-2,0, ОП-10 0,1-2,0, а также изопропиловый спирт в количестве 5-100 мл/л и воду - остальное, при напряжении 40-300 В в течение 25-75 с, а термообработку осуществляют при температуре 300-310 °C в течение 10-15 минут. Технический результат - улучшение качества наносимых покрытий, повышение их износо- и коррозионной стойкости при одновременном упрощении способа и расширении круга обрабатываемых металлов. 3 з.п. ф-лы, 6 пр., 2 ил., 1 табл.

Изобретение относится к области получения защитных антифрикционных износостойких и обладающих высокой коррозионной стойкостью покрытий на вентильных металлах и их сплавах, преимущественно на титане и его сплавах, алюминии и его сплавах, сплавах магния, и может найти применение для защиты от коррозии деталей и металлоконструкций, работающих в водных коррозионно-активных средах, в атмосфере с высокой влажностью и под воздействием агрессивных ионов. Способ включает электрохимическую обработку поверхности металла, которую осуществляют при напряжениях, обеспечивающих протекание плазменных микроразрядов на границе раздела электрод-электролит при эффективной плотности тока 0,5-1,0 в электролите. Электролит содержит растворимый фосфат, тартрат либо силикат и представляет собой коллоидный раствор при значениях pH 8,0-10,5. Слой политетрафторэтилена (ПТФЭ) наносят из суспензии, содержащей частицы ПТФЭ размером 0,2-0,6 мкм в изопропиловом спирте с добавлением смачивателя ОП-10. Компоненты берут в следующем содержании: ПТФЭ 100,0-150,0; смачиватель ОП-10 6,0-8,0; изопропиловый спирт - остальное. Затем проводят термообработку покрытия. Техническим результатом изобретения является повышение антикоррозионных свойств и износостойкости защитных покрытий на вентильных металлах и сплавах. 3 з.п. ф-лы, 2 ил., 5 пр.

Изобретение относится к области получения твердых углеродных материалов и может быть использовано в промышленном синтезе катодных материалов для литиевых химических источников тока
Изобретение относится к нанесению защитных покрытий на изделия из стали, эксплуатируемые в коррозионно-активных средах, в частности в морской воде

Изобретение относится к медицине и описывает способ получения биосовместимых фторполимерных покрытий на изделиях из нитинола, который включает предварительную подготовку поверхности изделия в водном электролите следующего состава, г/л: NaAlO 2 10-20, Na2СО3 15-20, Na3PO4 20-25, в анодном режиме при напряжении формирования, изменяющемся от 0 до 180-200 В со скоростью 0,2-0,3 В/с, в течение 10-20 мин, а затем в биполярном режиме при постоянном анодном напряжении формирования в интервале 180-200 В и плотности катодной составляющей тока 1,0-1,5 А/см2 в течение 5-10 мин, нанесение на подготовленную поверхность высокодисперсного низкомолекулярного политетрафторэтилена механическим натиранием и нагрев нанесенного покрытия при 100-120°С в течение 50-70 мин

Изобретение относится к обувной промышленности, в частности к конструкциям низа обуви, и может быть использовано для производства обуви специального назначения для использования во влажных полевых условиях военнослужащими, нефтяниками, геологами, работниками силовых структур, охотниками, туристами

 


Наверх