Патенты автора Анашин Василий Сергеевич (RU)

Изобретение относится к области ускорительной техники. Устройство для облучения протонами электроники, располагаемой внутри ускорительной камеры синхроциклотрона, блок позиционирования с образцами электроники размещается внутри ускорительной камеры выше медианной плоскости ускорителя на конце штанги-пробника, перемещающегося по радиусу. Разделение орбит и облучение образцов по всей их фронтальной плоскости осуществляется способом вертикального заброса ускоряемого сгустка (банча) протонов на облучаемый образец при помощи высоковольтного двухэлектродного электростатического дефлектора, смонтированного также на конце штанги-пробника. Для синхронизации момента включения высоковольтного импульсного генератора с радиально-азимутальным положением сгустка ускоряемых протонов введена обратная связь генератора с фокусирующим электродом и дуантом. Технический результат - улучшение параметров и качества протонного пучка для радиационного облучения исследуемых мишеней. 2 ил. .

Устройство относится к ускорительной технике и радиационной физике, непосредственно к радиационному облучению электроники авиакосмического назначения протонным пучком синхроциклотрона переменной энергии с целью тестирования ее надежности. Так как синхроциклотрон имеет фиксированную энергию протонов 1000 Мэв, то в устройстве используется деградер с автоматически перестраиваемой длиной поглотителя для изменения энергии протонного пучка и подвижная координатная система для позиционирования каждого из облучаемых образцов электроники по оси пучка. Облучаемые образцы находятся в подвижной термокамере. Для авторегулировки и стабилизации интенсивности протонного пучка и флюэнса на каждый из облучаемых образцов использован авторегулятор в виде линии временной задержки момента начала работы автогенератора питания дуанта, который включен в разрыв цепи синхронизации между автогенератором питания и вариатором частоты дуанта. Для работы всего устройства в автоматическом режиме использована многоуровневая интеллектуальная АСУ. Технический результат повышение эффективности работы устройства. 1 ил.

Устройство относится к средству радиационного облучения электроники авиакосмического назначения протонным пучком синхроциклотрона переменной энергии с целью тестирования ее надежности в соответствии со стандартами РФ, предписывающими проводить такие испытания в потоках протонов с энергетическим спектром, подобным атмосферному во всем диапазоне энергий 0-1000 МэВ. Синхроциклотрон имеет фиксированную энергию протонов 1000 МэВ, при этом в устройстве использован деградер с автоматически перестраиваемой длиной для изменения энергии протонного пучка и подвижная координатная система для позиционирования каждого из облучаемых образцов электроники по оси пучка. Облучаемые образцы находятся в подвижной термокамере. Для работы всего устройства в автоматическом режиме использована многоуровневая интеллектуальная АСУ. Техническим результатом является возможность on-line экспресс-облучения электроники авиакосмического назначения в режиме ее штатного функционирования согласно программно-методическому алгоритму. 3 ил., 1 табл.

Изобретение относится к средствам радиационного облучения электроники авиакосмического назначения протонным пучком синхроциклотрона с целью тестирования ее надежности. В устройстве использован деградер с автоматически перестраиваемой длиной для изменения энергии протонного пучка и подвижная координатная система для установки каждого из облучаемых образцов электроники по оси пучка. Облучаемые образцы находятся в подвижной термокамере. Для работы всего устройства в автоматическом режиме использована многоуровневая интеллектуальная АСУ. Техническим результатом является возможность экспресс-облучения электроники авиакосмического назначения в режиме ее штатного функционирования согласно программно-методическому алгоритму стандарта JEDEC. 1 ил.

Изобретение относится к области электроники и используется для задания температуры интегральных микросхем при испытаниях на стойкость к воздействию тяжелых заряженных частиц (ТЗЧ) в вакуумных камерах. Технический результат: расширение рабочего температурного диапазона проведения радиационных испытаний интегральных микросхем, снижение стоимости испытаний микросхем за счет уменьшения временных затрат. Сущность: установка включает теплопроводящую пластину для размещения печатной платы с объектом испытаний, два термоэлектрических модуля, блок охлаждения и два датчика температуры, один из которых расположен на теплопроводящей пластине, блок управления, соединенный с модулями, датчиками температуры и блоком охлаждения. Блок охлаждения содержит радиатор с вентиляторами и водоблок, соединенный магистралями через насос с радиатором. Первый и второй термоэлектрические модули установлены последовательно между теплопроводящей пластиной и водоблоком Магистрали снабжены быстроразъемными герметичными клапанами. Второй датчик температуры расположен на поверхности водоблока со стороны второго термоэлектрического модуля. 2 з.п. ф-лы, 2 ил.,2 табл., 1 пр.

Изобретение относится к электронной технике, к области производства и эксплуатации интегральных схем, может быть использовано для проведения комплекса мероприятий по подготовке образцов изделий радиоэлектронной аппаратуры, к проведению испытаний на стойкость, к воздействию ионизирующего излучения космического пространства. Способ декорпусирования интегральных микросхем для последующего проведения испытаний характеризуется тем, что проводят технологическую подготовку испытуемых изделий из выборки партий произвольных функциональных классов, включающую визуальный контроль на отсутствие механических повреждений, идентификацию изделия путем определения типа корпуса и его внутреннего строения, характеристик кристалла, его геометрических размеров, наличия и толщины защитных покрытий, слоев металлизации, электрических характеристик, компонентного состава корпуса, полученные данные используют для определения области, направления, глубины, профиля проводимого далее утонения корпуса, и/или декорпусирования, осуществляемого плазмохимическим, или плазменным, или химическим травлением, с подбором шаблона из химически стойкой резины с окном, определяющим требуемую зону декорпусирования, или механическим или лазерным методами, или их совокупностью, с последующей промывкой испытуемого изделия в ультразвуковой ванне растворителями и выходным визуальным, функциональным, параметрическим контролем его. Изобретение позволяет проводить декорпусирование кристалла электронных микросхем с сохранением их работоспособности. 8 з.п. ф-лы, 4 табл., 1 пр.

Изобретение относится к области испытания объектов электронной техники, в частности предназначено для отбраковки образцов интегральных микросхем с аномально низкой радиационной стойкостью и надежностью

 


Наверх