Патенты автора Засухин Отто Николаевич (RU)

Изобретение относится к металлургии, в частности к обработке давлением молибдена, и может быть использовано при изготовлении изделий летательных аппаратов, теплообменников, тепловых экранов. Способ обработки заготовок из холоднодеформированного молибдена включает формообразующую пластическую деформацию путем вытяжки, при этом перед вытяжкой заготовку из холоднодеформированного молибдена подвергают одновременному воздействию потока воздуха и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дБ в течение 10-20 мин. Сокращается продолжительность процесса обработки при обеспечении требуемых механических свойств в исходной заготовке и отсутствии дефектов в готовом изделии. 1 табл.
Изобретение относится к области органических высокомолекулярных соединений, в частности к обработке изделий из углепластика. Способ обработки изделий из углепластика содержит обработку без нагрева пульсирующим газовым потоком. Газовый поток обладает скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ. Продолжительность обработки составляет от 2,5 до 10 мин при расположении изделия поперек потока. Изобретение позволяет повысить статическую прочность - предел прочности и динамическую прочность - ударную вязкость изделий из углепластика.
Изобретение относится к области металлургии. Для повышения надежности холоднодеформированных металлических изделий за счет повышения их пластичности и вязкости без снижения показателей прочности и твердости, а также снижения продолжительности обработки изделие после холодного пластического деформирования подвергают воздействию пульсирующим дозвуковым воздушным потоком, имеющим частоту, соответствующую частоте собственных колебаний обрабатываемого изделия, и звуковое давление 100-145 дБ при температуре от -20°С до +5°С.

Изобретение относится к способам термической обработки изделий или заготовок из псевдо-β титановых сплавов путем закалки и холодной пластической деформации и может быть реализовано в металлургии, а также в машиностроении в производстве для изготовления конкретных изделий из них, в частности, пружин. Способ термической обработки изделия из псевдо-β титановых сплавов включает нагрев закаленного и продеформированного изделия, его выдержку и охлаждение. Нагрев изделия осуществляют до температуры (0,4-0,45) tcm, где tcm°C - температура старения сплава, выдерживают в течение 10-15 мин, а охлаждение ведут до температуры -10°С при одновременном воздействии потока газа и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дБ в течение 10 мин. Формируется внутризеренная структура с выстраиванием дислокаций в виде упорядоченных образований, в результате чего уменьшаются внутренние микронапряжения на границах раздела фаз, увеличиваются значения пределов упругости и текучести, а также повышается пластичность. 1 з.п. ф-лы, 1 табл.
Изобретение относится к области металлургии. Для повышения показателей надежности термообработанных изделий из конструкционных материалов вне зависимости от направления эксплуатационного нагружения способ включает термообработку изделия и последующую обработку пульсирующим газовым потоком при комнатной температуре последовательно в двух и более направлениях до обеспечения изотропии свойств относительно направлений испытываемых эксплуатационных нагружений.
Изобретение относится к области обработки черных металлов, в частности к обработке изделий из среднеуглеродистых легированных конструкционных сталей. Техническим результатом изобретения является повышение значений показателей ударной вязкости и пластичности без снижения показателей прочности. Для достижения технического результата проводят закалку и низкий отпуск изделий, а затем воздействуют на неё пульсирующим дозвуковым воздушным потоком при комнатной температуре с частотой колебаний от 550 до 1000 Гц в течение 15-35 мин, что способствует повышению подвижности дислокаций в сталях и релаксации остаточных микронапряжений.
Изобретение относится к области обработки черных металлов, а более конкретно к обработке металлорежущего инструмента из быстрорежущей стали. Для повышения стойкости инструмента рабочую часть стандартно термоупрочненного инструмента из быстрорежущей стали подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 мин. Изобретение позволило повысить стойкость стандартно термоупрочненного металлорежущего инструмента из быстрорежущей стали в 2-2,5 раза.
Изобретение относится к области обработки черных металлов, а более конкретно к повышению упругих свойств витых пружин, изготовленных из стальной проволоки. Для повышения упругих свойств и расширения номенклатуры обрабатываемых изделий стальную витую пружину в упруго нагруженном состоянии существенно ниже значения предела упругости подвергают воздействию пульсирующим дозвуковым воздушным потоком, имеющим частоту 1130-2100 Гц и звуковое давление 120-140 дБ, при комнатной температуре и при её расположении поперек воздушного потока.
Изобретение относится к области металлургии, а более конкретно к термической обработке. Для повышения производительности обработки, а также твердости с пониженными закалочными напряжениями и деформациями сталь подвергают закалке на мартенсит в пульсирующем воздушном потоке, имеющем частоту до 2300 Гц и звуковое давление до 145 дБ, обеспечивающем скорость охлаждения выше критической скорости закалки, с последующим воздействием на нее пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре, за одну операцию без перемещения обрабатываемого изделия. 1 з.п. ф-лы.
Изобретение относится к области металлургии, в частности к термической обработке изделий конструкционных сталей. Для повышения ударной вязкости стали при сохранении высоких значений показателей твердости и прочности стальное изделие закаливают на мартенсит, после чего при комнатной температуре подвергают в течение 10-15 минут воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ, которое дополняют воздействием колеблющихся в пульсирующем воздушном потоке металлических пустотелых шариков, размещенных вдоль поверхности обрабатываемого изделия в виде параллельных рядов цепочек, в виде сетки из пересекающихся цепочек шариков или установленных в ячейки проволочной сетки. 3 з.п. ф-лы.

Изобретение относится к области обработки черных металлов, в частности к повышению механических свойств конструкционных сталей. Для повышения значений показателей ударной вязкости и пластичности без снижения показателей прочности изделие подвергают закалке и высокому отпуску, а затем осуществляют последующую обработку изделия путем воздействия на него в течение 35 мин пульсирующим газовым потоком со скоростью от 25 до 30 м/с, частотой колебаний от 600 до 1000 Гц и переменным звуковым давлением от 80 до 90 дБ. 1 ил.
Изобретение относится к термической обработке углеродистых инструментальных сталей. Способ термической обработки включает закалку сталей с температуры 760-780°C и последующее воздействие на них при комнатной температуре пульсирующего дозвукового воздушного потока частотой 1130-2100 Гц и звуковым давлением 120-140 дБ. Технический результат заключается в обеспечении высокой твердости при низкой хрупкости.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделия из деформируемого сплава ВТ23 характеризуется тем, что изделие нагревают до 850°С, выдерживают 1 ч, охлаждают в воде и подвергают старению при температуре 550°С в течение 10 ч. Затем изделие нагревают, выдерживают при температуре 300-400°С и проводят последующее охлаждение до температуры 20 ÷ (-10)°С при одновременном воздействии потока газа и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дБ. Измельчаются зерна избыточной фазы α-твердого раствора, а также все структурные составляющие, формируется внутризеренная структура с выстраиванием дислокаций в виде упорядоченных образований и уменьшением внутренних микронапряжений на границах раздела фаз. Повышается прочность при удовлетворительной пластичности, а также повышается релаксационная стойкость сплавов. 1 ил., 2 табл.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделий из титанового сплава ВТ16 включает закалку путем нагрева до температуры 790-830°C, выдержки и охлаждения в воде. После закалки изделие нагревают до температуры (0,5-0,6)tcm, где tcm - температура старения сплава, °C, ведут охлаждение до температуры -10°C при одновременном воздействии потока газа и акустического поля с уровнем звукового давления 140-160 дБ и проводят последующее старение при температуре 560°C в течение 3 часов с охлаждением на воздухе. Уменьшается продолжительность старения титанового сплав ВТ16 в процессе старения при сохранении высокого уровня прочности и пластичности. 1 ил.
Изобретение относится к области металлургии, в частности к термической обработке конструкционных сталей. Способ включает закалку конструкционной стали на мартенсит с последующим воздействием на нее пульсирующего дозвукового воздушного потока с определенными частотой и звуковым давлением при комнатной температуре. Техническим результатом изобретения является сокращение продолжительности технологического процесса упрочняющей термической обработки конструкционных сталей при сохранении высоких значений показателей твердости и прочности и обеспечении достаточной надежности.
Изобретение относится к области металлообработки, в частности к повышению надежности и долговечности металлических изделий

Изобретение относится к области металлургии, а более конкретно к термической обработке
Изобретение относится к области металлургии, а более конкретно к термической обработке, в частности к термической обработке титановых сплавов

Изобретение относится к области распыления жидкостей и может быть использовано в химической, металлургической, лакокрасочной промышленности, в частности, при приготовлении коллоидных растворов, нанесении лакокрасочных и защитных покрытий, а также при охлаждении проката и т.п

 


Наверх