Патенты автора Алексеев Владимир Николаевич (RU)

Изобретение относится к средствам скрытия в оптическом и радиолокационном диапазонах электромагнитных волн взлетно-посадочных полос из бетона при ведении противником воздушно-космической и наземной разведок. Маскировочное устройство оснащено пеногенераторами и дополнительно содержит установочные механизмы (3), состоящие из каркаса, с жестко закрепленными к нему тяговыми и головным реактивными двигателями. Сопло на головном двигателе установлено под углом 15° к горизонту и закреплен рассекатель конической формы стабилизирующего устройства, из металлического сплава прямоугольной формы с элеронами, одной стороной закрепленного к покрытию (10) из металлизированной полимерной пленки, а другой к каркасу посредством гибких связей. Шасси перемещается в горизонтальной плоскости в направляющих, через которые пропущены боковые тросы, установленные поперек грунтовой полосы. Покрытия (10) уложены в траншеи, имеющие подпружиненные крышки с механизмами их управления. Пеногенераторы установлены в колодцы и закрыты металлическими люками со сквозными отверстиями. Обеспечивается скрытие реальной и одновременно имитации ложной взлетно-посадочной полосы с воспроизведением уровня обратного отражения электромагнитных волн оптического и радиолокационного диапазонов от имитируемой полосы, соответствующего уровню отражения от поверхности бетона. 11 ил.

Изобретение относится к области военного дела, а более конкретно к средствам скрытия войск и войсковых объектов на позициях и в районах их расположения. Комплект подъемно-подвижной горизонтальной маски содержит маскировочное покрытие и тяжи. Комплект дополнительно содержит беспилотные дистанционно-пилотируемые аппараты вертолетного типа, выполненные с возможностью их крепления к маскировочному покрытию по периметру, включая углы, посредством тяжей, с расстоянием между ними L1, определяемым из условия f≤L1/10, где f - прогиб маски (м). Каждый тяж представлен тросом в виде зацепа с карабином, закрепленным на одном его торце, и двурогим крюком на другом. Обеспечивается маскировка ВВТ и их боевых позиций, а также имитация ложных, с последующим ее перемещением в позиционном районе к новому месту проведения работ. 2 ил.

Изобретение относится к области измерения температуры в зонах с сильными электромагнитными помехами, в зонах повышенной взрыво-пожароопасности, при измерениях под высоким напряжением и в других условиях, где недопустимо применение стандартных электронных средств контроля температурного состояния, а именно к системам для мониторинга температурного состояния в медицине, на объектах энергоснабжения, инженерных сооружениях. Заявленный волоконно-оптический термометр содержит оптический ответвитель, циркулятор, оптический фильтр, N-1 последовательно соединенных посредством волоконных световодов оптических разветвителей, N-1 оптических датчиков, N последовательно соединенных посредством волоконных световодов оптических объединителей, где N - натуральное число и N≥1. Первый выход каждого предыдущего из N оптического разветвителя соединен с входом каждого последующего соответствующего из N оптического разветвителя, второй выход каждого введенного из N-1 оптического разветвителя соединен с входом соответствующего из N-1 оптического датчика посредством волоконного световода. Выход каждого из N оптического датчика соединен со вторым входом соответствующего из N оптического объединителя посредством волоконного световода, причем первый вход каждого предыдущего из N оптического объединителя соединен с выходом каждого последующего соответствующего из N оптического объединителя. Выход первого из N оптического объединителя соединен с входом оптического ответвителя посредством волоконного световода. Первый выход оптического ответвителя соединен с входом первого фотоприемника посредством волоконного световода, а второй выход оптического ответвителя соединен с входом циркулятора посредством волоконного световода. Первый выход циркулятора соединен с оптическим фильтром посредством волоконного световода, второй выход циркулятора соединен с входом второго фотоприемника посредством волоконного световода, а выходы первого и второго фотоприемника соединены с первым и вторым входами контроллера определения температуры соответственно посредством электрических проводов. Источник лазерного излучения выполнен широкополосным, а каждый оптический датчик выполнен на основе волоконной решетки Брэгга с двумя фазовыми сдвигами. Технический результат - упрощение схемы волоконно-оптического термометра. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области измерения температуры в зонах с сильными электромагнитными помехами, в зонах повышенной взрыво- и пожароопасности, при измерениях под высоким напряжением и в других условиях, где недопустимо применение стандартных электронных средств контроля температурного состояния, а именно к системам для мониторинга температурного состояния в медицине, на объектах энергоснабжения, инженерных сооружениях. Волоконно-оптический термометр содержит оптический разветвитель, вход и выходы которого соответственно соединены волоконными световодами с третьим выходом светораспределительной системы и с каждым волоконно-оптическим датчиком, а в каждом волоконно-оптическом датчике перед записанной на торце волоконного световода первой волоконной решеткой Брэгга записана вторая волоконная решетка Брэгга по меньшей мере с двумя фазовыми сдвигами. В волоконно-оптическом термометре в каждом волоконно-оптическом датчике первая волоконная решетка Брэгга может быть записана либо как продолжение второй волоконной решетки Брэгга, тогда конструкция датчика имеет вид щупа, либо на расстоянии от второй волоконной решетки Брэгга, позволяющем свернуть петлю и уложить первую волоконную решетку Брэгга в непосредственном контакте со второй, закрепив их на наконечнике произвольной плоской или объемной формы, тогда конструкция датчика имеет кольцевой вид. Технический результат - повышение чувствительности измерений. 4 з.п. ф-лы. 5 ил.
Изобретение относится к области медицины, а именно к офтальмологии, и может использоваться для прогнозирования риска прогрессирования глаукомной оптической нейропатии (ГОН). У больных ГОН определяют уровень лактата в крови и при значении уровня лактата ≥4,33 ммоль/л прогнозируют высокий риск прогрессирования глаукомной оптической нейропатии в течение 1 года после обследования. Изобретение обеспечивает доступный и дешевый клинико-лабораторный способ прогнозирования риска прогрессирования ГОН. 1 табл., 2 пр.

Изобретение относится к области медицины, а именно к офтальмологии, и может использоваться для прогнозирования степени риска прогрессирования глаукомной оптической нейропатии (ГОН). У больного глаукомной оптической нейропатией определяют сумму градусов полей зрения, внутриглазное давление и максимальную остроту зрения и прогнозируют риск прогрессирования ГОН по формуле: y=25,8+10,9х1-0,002х2-1,5х3, где y - прогностический индекс, х1 - максимальная острота зрения, х2 - сумма градусов полей зрения, х3 - внутриглазное давление. При значении y=1,73 и менее прогнозируют высокую степень риска прогрессирования ГОН, то есть в течение 6-8 месяцев после обследования, при значении y=1,74-4,99 - среднюю степень риска, то есть в течение 9-12 месяцев после обследования, при значении y=5,00 и более прогнозируют низкую степень риска прогрессирования глаукомной оптической нейропатии, то есть начало прогрессирования в течение 13-24 месяцев после обследования. Способ позволяет осуществить прогнозирование степени риска прогрессирования ГОН для обеспечения своевременного назначения нейропротекторного лечения за счет офтальмологического обследования. 5 табл., 2 пр.

Изобретение относится к квантовой электронике

Изобретение относится к сельскому хозяйству, а именно к способам и комплексам для обработки зерна, семян или плодоовощной продукции озоном

Изобретение относится к сельскому хозяйству, а именно к способам и комплексам для обработки зерна, семян и помещений озоном

 


Наверх