Патенты автора Богомолов Александр Романович (RU)

Изобретение относится к области переработки резинотехнических отходов (РТО) с комплексным подходом процесса пиролиза и может быть использовано при переработке производственных углеводородных твердых отходов различного назначения. Способ комплексной логической переработки осуществляется в реакторе шахтного типа при нагреве измельченной резины в виде гранул со скоростью нагрева 9-12,5°С/мин до температуры 550-700°С без доступа воздуха и поддержании этой температуры до окончания выхода летучих веществ, при этом образуется метано-водородная газовая смесь с содержанием этих компонентов до 90-95%, которую методом мембранной технологии можно разделить на чистые компоненты и/или использовать в дальнейшем на модульных водородных и метановых заправочных станциях, а также частично направлять в качестве топлива для поддержания эндотермического процесса пиролиза. Метано-водородная смесь может быть использована, предпочтительно, для производства электроэнергии в газотурбинной или газопоршневой установке. Процесс подвода теплоты осуществляют аллотермическим способом через стенку реактора. При пиролизе для обогрева реактора используют дымовой газ с температурой 900-950°С при сжигании части метано-водородной смеси. В сконденсированной фазе тяжелых углеводородов процесса пиролиза С5-С12 в существенном количестве присутствуют ценные вещества, например Д-Лимонен, о-Цимен и др., которые путем дистилляции выделяют как высокомаржинальные продукты. Оставшаяся после дистилляции тяжелая фракция углеводородов с температурой кипения выше 200°С может быть использована для получения дымовых газов с температурой 1100-1200°С, направляемых в рубашку обогрева реактора для поддержания температуры проведения процесса активации твердого углеродного остатка углекислотной газификацией при температуре от 940 до 1000°С с целью получения углеродных сорбентов различного назначения. При проведении углекислотной газификации образуется оксид углерода (II), который направляют для производства карбамида или на каталитическую паровую конверсию с получением водорода и оксида углерода (IV). При охлаждении полученной газовой смеси СО2 переводят в жидкое состояние и направляют в ресивер, а водород используют на модульных автомобильных заправочных станциях. Жидкую углекислоту направляют в рецикл для проведения углекислотной газификации. Технический результат заявляемого изобретения - повышение качества твердого остатка, снижение выбросов загрязняющих веществ. 1 ил.

Изобретение относится к области термической переработки углей и направлен на производство газообразных, жидких продуктов и углеродного твердого остатка. Изобретение касается способа получения жидких продуктов при термическом распаде твердого углеродсодержащего сырья, в котором исходное сырье, пригодное для переработки, направляют в пиролизер, где при поддерживаемой температуре 450-475°C, в среде жидкого водорододонорного растворителя, представляющего собой конденсированную фазу пиролиза резинотехнических отходов (РТО), происходит образование следующих продуктов: газовая фаза углеводородов, твердый углеродный остаток, водные растворы органических веществ. Далее твердый углеродный остаток направляют в экстрактор, где путем последовательного экстракционного воздействия н-гексаном и бензолом образуются жидкие продукты - мальтены и асфальтены. Технический результат - повышение эффективности процесса, а именно получение жидких продуктов – мальтенов и асфальтенов. 1 ил.

Изобретение относится к способам прогнозирования гидрируемости углей. Описан способ прогнозирования гидрируемости углей в процессах прямого ожижения, включающий измерение относительного содержания алифатических структур в углях по отношению к ароматическим структурам, оцененных по данным ИК-спектров, определенному как отношение суммы оптических плотностей ИК-полос поглощения валентных С-Н-колебаний алкильных групп D2920+D2860 в диапазоне волновых чисел 2840-2860см-1 и 2960-2920 см-1 к оптической плотности ИК-полосы поглощения при 1600-1630 см-1, относящейся к валентным колебаниям С=С-связей ароматических колец D1600, то есть (D2920 + D2860)/D1600, причем, чем выше отношение (D2920 + D2860)/D1600 для конкретного угля, тем легче уголь гидрируется. Технический результат - расширение арсенала средств способов прогнозирования гидрируемости углей. 2 ил., 1 табл.

Изобретение относится к системам теплоснабжения различных объектов как наземного, так и подземного назначения и предназначено для получения тепловой энергии (горячего воздуха) и подачи ее на объект. В газовом теплоэнергетическом комплексе, включающем камеру сгорания, горелку, по крайней мере два теплообменника, рассекатель, дутьевой вентилятор, дымосос, воздухоподогреватель, устройство для регулирования подачи присадочного воздуха, газоходы и воздуховоды, теплообменники содержат конвективные поверхности нагрева, а форма сечения входного и выходного воздушных каналов является прямоугольной. Также предложен теплообменник газового теплоэнергетического комплекса как часть системы и способ применения газового теплоэнергетического комплекса. Технический результат - повышение эффективности и безопасности работы газового теплоэнергетического комплекса за счет упрощения конструкции конвективных поверхностей нагрева теплообменника, повышения коэффициента теплопередачи, компенсации температурных напряжений и повышения тепловой мощности установки при сохранении габаритных размеров и веса. 3 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к теплообменному оборудованию и может быть использовано для утилизации теплоты дымовых газов тепловых электростанций и подогрева воздуха, подаваемого на горение топлива. Теплообменник-утилизатор содержит корпус с каналами для прохода газа, разделенными между собой трубной доской, в которой закреплены термосифоны, обеспечивающие тепловую связь между каналами, кольцевой зазор между трубами термосифонов и отверстиями в трубной доске перекрывается нижним ребром оребренной трубы зоны конденсации, имеющим эластичную прокладку, позволяющую компенсировать линейные перемещения от неточности установки ребер на термосифонных трубах на одной гребенке до 3 мм, обеспечивающим газоуплотненность между газовоздушными каналами; высокая температура поверхности термосифонных трубок в зоне кипения исключает процесс конденсации кислотных газов на наружной поверхности труб, соприкасающихся с дымовыми газами, приводящих к активной коррозии поверхности труб термосифонов. Технический результат - предотвращение коррозии поверхности труб термосифонов за счет надежного перекрытия кольцевых зазоров между трубами термосифонов и отверстиями в трубной доске. 1 ил.

Изобретение раскрывает способ брикетирования мелких классов кокса, включающий смешивание мелких фракций кокса со связующим веществом, прессование брикетов, отличающийся тем, что коксовую шихту, приготовленную из коксовой мелочи класса 0-10 мм типичной для коксового производства влажностью смешивают с коксовой пылью фракции 0-1 мм в соотношении от 2,5/1 до 4,5/1 по массе, со связующим веществом, подвергают прессованию давлением до 35 МПа и отверждению в естественных условиях, преимущественно при 20°С, в течение 24 часов, в качестве связующего вещества используют смесь сухой золы уноса (отходы тепловых станций угольной генерации) и кристаллического каустика в соотношении от 3/2 до 4/1 по массе, доля которой в брикетной шихте составляет 7-10% по массе, при этом смесь золы уноса, каустика и влаги коксовой мелочи выполняет функцию образования алюмосиликатного клея, оказывающего цементирующее действие для созревания прочности. Технический результат заключается в получении бездымных углеродсодержащих брикетов без термической сушки, с повышенной механической прочностью, в снижении энергоемкости и стоимости брикетов. 1 табл.

Изобретение относится к энергетике и может использоваться в устройствах для нагрева воздуха, подаваемого для отопления помещений. Сущность изобретения в том, что в воздухонагревателе, содержащем цилиндрический корпус и цилиндрическую камеру догорания, конвективную поверхность нагрева, выполненную из труб, установленных равномерно вокруг камеры догорания параллельно ее оси, спиральный канал в межтрубном пространстве конвективной поверхности нагрева, огибающий снаружи камеру догорания от патрубка подвода воздуха до патрубка его отвода, в качестве горелочного устройства установлена циклонная топка, между циклонной топкой и камерой догорания установлен соединительный газоход, ось цилиндрического корпуса ориентирована вертикально, между цилиндрическим корпусом и камерой догорания установлена концентрично им промежуточная труба, делящая конвективную поверхность нагрева на две - первую, расположенную между стенками промежуточной трубы и камеры догорания, и вторую, расположенную между стенками промежуточной трубы и цилиндрического корпуса. В верхней части промежуточной трубы между последними витками промежуточной трубной доски, образующей спиральный канал, выполнен проем, соединяющий воздушные пространства второй конвективной поверхности нагрева и первой, в нижней части промежуточной трубы выполнен проем, соединяющий в створе с выходным патрубком воздушное пространство первой конвективной поверхности нагрева с воздушным пространством второй, спиральный канал в межтрубном пространстве второй конвективной поверхности нагрева выполнен восходящим от входного патрубка до верхнего проема в промежуточной трубе, спиральный канал в межтрубном пространстве первой конвективной поверхности нагрева выполнен нисходящим от верхнего проема в промежуточной трубе до нижнего, а соединительный газоход снабжен двумя и более патрубками с посадочными местами для крепления циклонных топок. При таком выполнении повышается эффективность работы воздухонагревателя за счет вовлечения в теплообмен между продуктами сгорания топлива и нагреваемым воздухом радиационной составляющей и расширения диапазона регулирования температуры воздуха. 5 ил.

Изобретение относится к области энергетики, в частности к области полигенерирующих энерготехнологических комплексов, производящих в едином энерготехнологическом цикле тепловую, электрическую энергию и синтез-газ, применяемый для производства синтетического жидкого топлива. Полигенерирующий энерготехнологический комплекс содержит аллотермический газогенератор, в котором водяной пар выступает одновременно в качестве теплоносителя и газифицирующего агента, в газификаторе используется перегретый до 1200-1400°C водяной пар, имеется возможность получения синтез-газа для производства синтетического жидкого топлива, получение электрической энергии осуществляется в паровой турбине, водяной пар для которой получается в установке Фишера-Тропша при производстве синтетического жидкого топлива. Согласно изобретению в полигенерирующем энерготехнологическом комплексе имеется установка брикетирования исходного сырья, паровоздушный двухзонный газогенератор, аппарат пиролиза, в котором происходит термохимическое преобразование исходного топлива с образованием пиролизного газа и коксового остатка, блок подготовки коксового остатка исходного углеродсодержащего материала, паровой газогенератор, в котором газифицируемым сырьем выступает коксовый остаток исходного материала, состоящий преимущественно из углерода и золы, конденсатор-сепаратор, блок очистки синтез-газа, блок получения холода, паровая турбина, используемая в качестве источника получения водяного пара, который в дальнейшем используется для получения перегретого пара с температурой 1200-1400°C, газопоршневая электрическая станция. Техническим результатом изобретения является повышение эффективности работы полигенерирующего энерготехнологического комплекса. 1 ил.

Профилактическая смазка относится к составам для предотвращения смерзаемости сыпучих материалов, в частности угля, и для борьбы с пылеобразованием, может применяться в угольной, горнорудной, металлургической, строительной и других отраслях промышленности в условиях транспортировки при отрицательных температурах. Профилактическая смазка для предотвращения смерзания сыпучих веществ содержит в своем составе низкозастывающую базовую фракцию и растворяющий ее компонент. В качестве низкозастывающей базовой фракции она содержит шламы нефтепереработки (шлам НП), а в качестве растворяющего компонента спиртовую фракцию капролактама (СФК). Техническим результатом предлагаемой профилактической смазки для предотвращения смерзания сыпучих веществ является снижение смерзаемости угля и примерзания его к стенкам вагонов, сокращение затрат (материальных и трудозатрат) при его транспортировке и разгрузке, что достигается путем нанесения на уголь и внутреннюю поверхность железнодорожных вагонов. 5 ил., 3 табл.

Группа изобретений относится к области энергетики, углеперерабатывающей, химической, металлургической промышленности и предназначена для получения высокотемпературного водяного пара (до 1500°C). Технический результат заявляемой группы изобретений заключается в упрощении конструкции устройства и способа, что приводит к простоте изготовления и эксплуатации, к снижению массы и габаритов устройства, к снижению гидравлического сопротивления процесса. Технический результат достигается тем, что в парогенераторе, включающем корпус, запальное устройство, узел подвода низкоэнтальпийного водяного пара, выходную часть, согласно изобретению, по оси корпуса установлен патрубок подвода смеси водорода и кислорода, а узел подвода низкоэнтальпийного водяного пара имеет патрубок подвода низкоэнтальпийного водяного пара, торцевую стенку, кольцевой канал, перегородку с отверстиями, расположенными по концентрической окружности относительно оси корпуса и находится относительно патрубка подвода смеси водорода и кислорода так, что корпус парогенератора является одновременно камерой сгорания и смешения. Указанный технический результат достигается также тем, что в способе получения высокотемпературного водяного пара, включающем сгорание водорода и кислорода в стехиометрическом соотношении и смешение продуктов сгорания с балластировочным компонентом, согласно изобретению, на сгорание подают смесь водорода и кислорода, в качестве балластировочного компонента применяют низкоэнтальпийный водяной пар, подвод смеси водорода и кислорода осуществляют по оси корпуса, подвод низкоэнтальпийного водяного пара - через отверстия, расположенные по концентрической окружности относительно оси корпуса, сгорание смеси водорода и кислорода осуществляют одновременно со смешением в потоке низкоэнтальпийного водяного пара. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области коксохимического, металлургического и строительного производства, в частности к устройствам выгрузки полукокса из камер печи полукоксования, сухого тушения кокса и газонепроницаемым затворам для выгрузки материала

Изобретение относится к топочным устройствам, к технологии низкотемпературного сжигания низкосортных топлив, а именно к установкам для полного сжигания мелкодисперсного органического сырья для производства тепловой энергии

Изобретение относится к области теплотехники, к технологии эффективного сжигания низкосортных топлив, а именно к установкам для полного сжигания мелкодисперсных топлив (угля, древесных отходов, горючих вторичных энергоресурсов и т.п.)

Изобретение относится к области переработки отходов коксохимического производства, а именно к способам брикетирования каменноугольных фусов, угольных шламов и мелких классов угля

Изобретение относится к области экологии и может быть использовано при разработке технологий и устройств для регенерации моторных, турбинных и трансформаторных масел

Изобретение относится к области переработки полезных ископаемых, в частности к технологии сухого тушения кокса, и может быть использовано в коксохимической промышленности

Изобретение относится к области технологических процессов, связанных с приготовлением, применением, переработкой и транспортировкой пылящих сыпучих материалов, и предназначено для сухой очистки газодисперсных потоков от пыли, включая мелкодисперсную пыль с низкой плотностью, в коксохимической, угольной, химической, металлургической промышленности

 


Наверх