Патенты автора Лямец Юрий Яковлевич (RU)

Использование: в области электроэнергетики. Технический результат – расширение функциональных возможностей способа. Операции способа ориентированы на наиболее распространенный тип силовых трансформаторов с первичными обмотками, соединенными по схеме «звезда с нулем», и вторичными обмотками, соединенными в треугольник. Наблюдают токи и напряжения первичных обмоток и токи на выходе треугольника вторичных обмоток. Наблюдаемые величины преобразуют в двумерные сигналы с использованием модели неповрежденного трансформатора, которую разделяют на три подмодели - первичных обмоток, вторичных обмоток и магнитопровода. В первой подмодели преобразуют первичные токи и напряжения в напряжения намагничивания. Во второй подмодели напряжения намагничивания преобразуют совместно с токами вторичной стороны трансформатора в токи его вторичных обмоток. Третья подмодель реализует закон полного тока, преобразуя токи первичных и соответствующих вторичных обмоток каждой фазы в токи намагничивания. Двумерные сигналы формируют из напряжений и токов намагничивания. На плоскостях двумерных сигналов задают характеристики блокирования защиты, играющие в данном способе приоритетную роль. Срабатывание защиты производят в случае выполнения двух условий: первое - несрабатывание ни одного из блокирующих органов; второе - срабатывание хотя бы одного из разрешающих органов. 1 з.п. ф-лы, 12 ил.

Изобретение относится к релейной защите и автоматике распределительных сетей. Сущность: наблюдаются фазные напряжения и токи на входе фидера. Наблюдаемые величины преобразуют в передающей модели фидера в фазные напряжения и хотя бы один опорный ток в произвольном месте предполагаемого замыкания. Сравнивают знаки каждого преобразованного напряжения и соответствующего опорного тока. Выделяют шесть типов интервалов времени: первый и второй интервалы совпадения знаков и четыре интервала несовпадения. Выделяют интервалы времени шести типов в зависимости от знаков преобразованного напряжения и соответствующего опорного тока. Разделяют время наблюдения процесса однофазного замыкания на три части. Первую часть определяют как сумму интервалов первого и второго типов, вторую часть - как сумму интервалов третьего и пятого типов, третью - как сумму интервалов четвертого и шестого типов. Формируют двумерный сигнал, элементы которого определяют как отношения второй и третьей части к первой части. Задают область существования двумерного сигнала на плоскости. При наблюдении фидера формируют двумерные сигналы для различных мест предполагаемого повреждения и определяют интервал возможных значений координаты места повреждения фидера как совокупность координат тех мест предполагаемых повреждений, двумерные сигналы которых отображаются в заданной области. Технический результат: упрощение способа и расширение его функциональных возможностей. 6 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа и повышение быстродействия релейной защиты, которая его реализует. В способе релейной защиты все режимы сети разделяют на две группы. На первую группу защита призвана реагировать, а на вторую - нет. Проводят обучение релейной защиты для гарантирования ее селективности. Обучают не реагировать на режимы второй группы. Роль учителя отводят имитационной модели электрической сети, в составе которой находится энергообъект. Наблюдаемые электрические величины преобразуют в двумерный сигнал и отображают его на собственной плоскости. Согласно способу, в отличие от известных технических решений подобного типа, где каждый режим реального объекта или же его имитационной модели отображается точкой на плоскости двумерного сигнала, каждый режим отображается годографом - геометрическим местом отображений изменяющегося двумерного сигнала за время наблюдения. На предварительном этапе обучения защиты определяют область отображений годографов режимов, воспроизводимых имитационной моделью. Это режимы второй группы. Их отображения создают блокирующую область. По своему функциональному назначению она запрещает действие релейной защиты. После обучения, когда защита работает на реальном объекте, ее поведение подчиняют ряду условий, вытекающих из взаимоположения годографа наблюдаемого режима и имеющейся блокирующей области. 2 з.п. ф-лы, 15 ил.

Изобретение относится к релейной защите и автоматике распределительных сетей. Сущность: наблюдаются фазные напряжения и токи на входе фидера. Наблюдаемые величины преобразуют в передающей модели фидера в фазные напряжения и хотя бы один опорный ток в произвольном месте предполагаемого замыкания. Сравнивают знаки каждого преобразованного напряжения и соответствующего опорного тока. Выделяют шесть типов интервалов времени: первый и второй интервалы совпадения знаков и четыре интервала несовпадения. Выделяют интервалы времени шести типов в зависимости от знаков преобразованного напряжения и соответствующего опорного тока. Разделяют время наблюдения процесса однофазного замыкания на три части. Первую часть определяют как сумму интервалов первого и второго типов, вторую часть - как сумму интервалов третьего и пятого типов, третью - как сумму интервалов четвертого и шестого типов. Формируют двумерный сигнал, элементы которого определяют как отношения второй и третьей части к первой части. Задают область существования двумерного сигнала на плоскости. При наблюдении фидера формируют двумерные сигналы для различных мест предполагаемого повреждения и определяют интервал возможных значений координаты места повреждения фидера как совокупность координат тех мест предполагаемых повреждений, двумерные сигналы которых отображаются в заданной области. Технический результат: упрощение способа и расширение его функциональных возможностей. 6 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа и повышение быстродействия релейной защиты, которая его реализует. В способе релейной защиты все режимы сети разделяют на две группы. На первую группу защита призвана реагировать, а на вторую - нет. Проводят обучение релейной защиты для гарантирования ее селективности. Обучают не реагировать на режимы второй группы. Роль учителя отводят имитационной модели электрической сети, в составе которой находится энергообъект. Наблюдаемые электрические величины преобразуют в двумерный сигнал и отображают его на собственной плоскости. Согласно способу, в отличие от известных технических решений подобного типа, где каждый режим реального объекта или же его имитационной модели отображается точкой на плоскости двумерного сигнала, каждый режим отображается годографом - геометрическим местом отображений изменяющегося двумерного сигнала за время наблюдения. На предварительном этапе обучения защиты определяют область отображений годографов режимов, воспроизводимых имитационной моделью. Это режимы второй группы. Их отображения создают блокирующую область. По своему функциональному назначению она запрещает действие релейной защиты. После обучения, когда защита работает на реальном объекте, ее поведение подчиняют ряду условий, вытекающих из взаимоположения годографа наблюдаемого режима и имеющейся блокирующей области. 2 з.п. ф-лы, 15 ил.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и адаптивности способа. Параметры модели трансформатора, подверженные изменению в ходе эксплуатации, подлежат определению в реальном времени, что в структурной схеме, реализующей предлагаемый способ, выполняет адаптивный корректор. Для синтеза корректора и для его запуска в режим восстановления требуется задать на фиксированном интервале времени неискаженный ток. Этот интервал приходится на время насыщения трансформатора. Задачу решает экстраполяция процесса на интервале правильной трансформации. Сначала модельный сигнал используется на этапе сегментации процесса, а затем - для экстраполяции на время после начала насыщения. Описание структурной схемы, реализующей данный способ в терминале микропроцессорной защиты, выполнено в дискретном времени. В качестве примера взят линейный модельный сигнал. Два его варьируемых параметра определяются в процессе сегментации. Экстраполяция совершается на три дискретных момента времени, составляющих фиксированный интервал в начале процесса насыщения трансформатора. На этом интервале определяются два параметра адаптивного корректора. Выходной сигнал структурной схемы образован в итоге коммутатором трех токовых сигналов - на интервале неискаженной трансформации, на фиксированном интервале, на интервале восстановления тока. 5 ил.

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда магнитопровод трансформатора тока выходит из насыщения, и подготовить условия для восстановления искаженного тока. Способ основан на сравнении отсчетов электрической величины и модельного сигнала. По результатам сравнения формируют двумерный сигнал, который подают на распознающий модуль, своеобразие которого заключается в том, что область его срабатывания задают на плоскости двумерного сигнала. Для достижения поставленной цели те же операции выполняют в строго определенной последовательности не однократно, а столько раз, сколько потребуется для определения максимальной продолжительности интервала однородности. Исследование совершают путем поэтапного расширения интервала всякий раз на один интервал дискретизации. Используют двухпараметрический сигнал. Параметры подбирают по заданному алгоритму. Между длительностью начального интервала и числом параметров модельного сигнала устанавливают взаимосвязь: число отсчетов наблюдаемой величины на единицу больше числа параметров модельного сигнала. Расширение интервала производят в случае срабатывания распознающего модуля на предыдущем интервале. Процесс приостанавливают, если при очередном расширении не произойдет срабатывания соответствующего распознающего модуля. Предлагается структура двумерного сигнала, состоящая из сигнала оценки уровня электрической величины на данном интервале и из сигнала невязки между электрической величиной и модельным сигналом. 3 з.п. ф-лы, 5 ил.

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к другому. Наблюдаемые отсчеты токов и напряжений преобразуют в комплексы и далее в замеры, которые воспринимаются распознающими модулями двух типов - блокирующего и разрешающего. Модули располагают комплексными плоскостями для отображения замеров как в ходе обучения, так и последующего функционирования релейной защиты на реальном объекте. Формирование замеров выполняется с участием передающей модели неповрежденной линии, такая модель представляет собой многополюсник в режиме обратной передачи. Входные величины передающей модели - токи и напряжения начала линии, выходные - модельные токи и напряжения, оценивающие соответствующие величины на втором конце предположительно неповрежденной линии. Реализован принцип многомерности релейной защиты. Основной замер токовый, дополнительный - напряженческий. Имитационная модель сети обучает блокирующие модули сигналами тех режимов, в которых линия не повреждена, а разрешающие модули, наоборот, режимов короткого замыкания в линии. Результатом обучения становятся области блокирования и срабатывания. 1 з.п. ф-лы, 7 ил.

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда магнитопровод трансформатора тока выходит из насыщения, и подготовить условия для восстановления искаженного тока. Способ основан на сравнении отсчетов электрической величины и модельного сигнала. По результатам сравнения формируют двумерный сигнал, который подают на распознающий модуль, своеобразие которого заключается в том, что область его срабатывания задают на плоскости двумерного сигнала. Для достижения поставленной цели те же операции выполняют в строго определенной последовательности не однократно, а столько раз, сколько потребуется для определения максимальной продолжительности интервала однородности. Исследование совершают путем поэтапного расширения интервала всякий раз на один интервал дискретизации. Используют двухпараметрический сигнал. Параметры подбирают по заданному алгоритму. Между длительностью начального интервала и числом параметров модельного сигнала устанавливают взаимосвязь: число отсчетов наблюдаемой величины на единицу больше числа параметров модельного сигнала. Расширение интервала производят в случае срабатывания распознающего модуля на предыдущем интервале. Процесс приостанавливают, если при очередном расширении не произойдет срабатывания соответствующего распознающего модуля. Предлагается структура двумерного сигнала, состоящая из сигнала оценки уровня электрической величины на данном интервале и из сигнала невязки между электрической величиной и модельным сигналом. 3 з.п. ф-лы, 5 ил.

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к другому. Наблюдаемые отсчеты токов и напряжений преобразуют в комплексы и далее в замеры, которые воспринимаются распознающими модулями двух типов - блокирующего и разрешающего. Модули располагают комплексными плоскостями для отображения замеров как в ходе обучения, так и последующего функционирования релейной защиты на реальном объекте. Формирование замеров выполняется с участием передающей модели неповрежденной линии, такая модель представляет собой многополюсник в режиме обратной передачи. Входные величины передающей модели - токи и напряжения начала линии, выходные - модельные токи и напряжения, оценивающие соответствующие величины на втором конце предположительно неповрежденной линии. Реализован принцип многомерности релейной защиты. Основной замер токовый, дополнительный - напряженческий. Имитационная модель сети обучает блокирующие модули сигналами тех режимов, в которых линия не повреждена, а разрешающие модули, наоборот, режимов короткого замыкания в линии. Результатом обучения становятся области блокирования и срабатывания. 1 з.п. ф-лы, 7 ил.

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к другому. Наблюдаемые отсчеты токов и напряжений преобразуют в комплексы и далее в замеры, которые воспринимаются распознающими модулями двух типов - блокирующего и разрешающего. Модули располагают комплексными плоскостями для отображения замеров как в ходе обучения, так и последующего функционирования релейной защиты на реальном объекте. Формирование замеров выполняется с участием передающей модели неповрежденной линии, такая модель представляет собой многополюсник в режиме обратной передачи. Входные величины передающей модели - токи и напряжения начала линии, выходные - модельные токи и напряжения, оценивающие соответствующие величины на втором конце предположительно неповрежденной линии. Реализован принцип многомерности релейной защиты. Основной замер токовый, дополнительный - напряженческий. Имитационная модель сети обучает блокирующие модули сигналами тех режимов, в которых линия не повреждена, а разрешающие модули, наоборот, режимов короткого замыкания в линии. Результатом обучения становятся области блокирования и срабатывания. 1 з.п. ф-лы, 7 ил.

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда магнитопровод трансформатора тока выходит из насыщения, и подготовить условия для восстановления искаженного тока. Способ основан на сравнении отсчетов электрической величины и модельного сигнала. По результатам сравнения формируют двумерный сигнал, который подают на распознающий модуль, своеобразие которого заключается в том, что область его срабатывания задают на плоскости двумерного сигнала. Для достижения поставленной цели те же операции выполняют в строго определенной последовательности не однократно, а столько раз, сколько потребуется для определения максимальной продолжительности интервала однородности. Исследование совершают путем поэтапного расширения интервала всякий раз на один интервал дискретизации. Используют двухпараметрический сигнал. Параметры подбирают по заданному алгоритму. Между длительностью начального интервала и числом параметров модельного сигнала устанавливают взаимосвязь: число отсчетов наблюдаемой величины на единицу больше числа параметров модельного сигнала. Расширение интервала производят в случае срабатывания распознающего модуля на предыдущем интервале. Процесс приостанавливают, если при очередном расширении не произойдет срабатывания соответствующего распознающего модуля. Предлагается структура двумерного сигнала, состоящая из сигнала оценки уровня электрической величины на данном интервале и из сигнала невязки между электрической величиной и модельным сигналом. 3 з.п. ф-лы, 5 ил.

Использование: в области электротехники. Технический результат – повышение точности разграничения режимов повреждения трансформатора и альтернативных им режимов. Согласно способу релейной защиты трансформатора осуществляют наблюдение токов и напряжений на зажимах его обмоток, преобразование наблюдаемых величин в двумерные сигналы, обучение релейной защиты от первой имитационной модели трансформатора, воспроизводящей режимы короткого замыкания в его обмотках, от второй имитационной модели, воспроизводящей режимы насыщения магнитопровода трансформатора, и от третьей имитационной модели, воспроизводящей режимы внешней сети, раздельного отображения множеств режимов первой, второй и третьей имитационных моделей в виде соответственно первой, второй и третьей областей на плоскостях двумерных сигналов. Производят срабатывание прошедшей обучение защиты наблюдаемого трансформатора, если по меньшей мере один замер отображается в соответствующей первой области, но при этом не каждый двумерный сигнал отображается в соответствующей второй или третьей области, и при формировании двумерных сигналов используют напряжения намагничивания обмоток, которые в свою очередь формируют в передающих моделях обмоток, где преобразуют ток и напряжение на зажимах каждой обмотки в соответствующее напряжение намагничивания. 1 з.п. ф-лы, 24 ил.

Использование: в области электротехники. Технический результат – расширение функциональных возможностей и повышение чувствительности защиты. Согласно способу предполагается двухстороннее наблюдение электропередачи с обменом информации между двумя полукомплектами релейной защиты, установленными на разных сторонах. Используют передающие модели участков линии от мест наблюдения до ответвлений и участка линии между ответвлениями, преобразуют выходные сигналы передающих моделей в комплексные замеры, отображают замеры на комплексных плоскостях распознающих модулей. Обучают распознающие модули от имитационных моделей линии электропередачи. Для передающих моделей вводят эквивалентные ответвления числом не более двух, замеры формируют в виде комплексных параметров отдельно для основной защиты и для защиты дальнего резервирования. Для основной защиты формируют по два комплексных параметра ответвлений в каждой фазе, каждый замер подают на предназначенные для него блокирующий и разрешающий распознающие модули, обучают блокирующие модули обеих защит от первой имитационной модели, воспроизводящей режимы неповрежденной линии. Дополнительно обучают блокирующие модули основной защиты, а также обучают разрешающие модули защиты дальнего резервирования, от второй имитационной модели, воспроизводящей нуждающиеся в резервировании режимы короткого замыкания в ответвлениях. Обучают разрешающие модули основной защиты от третьей имитационной модели, воспроизводящей короткие замыкания в магистральной линии, задают области срабатывания распознающих модулей как отображения множества обучающих режимов соответствующих имитационных моделей. Блокируют основную защиту, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание основной защиты, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. Блокируют защиту дальнего резервирования, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание защиты дальнего резервирования, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. 3 з.п. ф-лы, 22 ил.

Изобретение относится к релейной защите высоковольтных линий электропередачи, которые работают в режиме с глухозаземленной нейтралью, в частности к распознаванию поврежденных фаз. Техническим результатом является упрощение и повышение распознающей способности способа фазовой селекции. Способ распознавания поврежденных фаз линий электропередачи при неполнофазном замыкании на землю включает этапы наблюдения токов и напряжений в начале линии, преобразования их в комплексные замеры, отображения каждого замера на комплексной плоскости соответствующего распознающего модуля, обучения распознающих модулей с использованием имитационных моделей линии электропередачи, воспроизводящих различные типы коротких замыканий. Для достижения технического результата формируют фазные и междуфазные замеры. Каждый фазный замер подают на такое число распознающих модулей, которое равно числу различных типов коротких замыканий, по одному модулю на каждый тип. Каждый междуфазный замер подают на такое число распознающих модулей, которое равно числу различных типов двухфазных замыканий. Каждый модуль обучают распознавать один из типов замыканий. Модули, относящиеся к одному и тому же типу замыкания, объединяют по схеме И в общий модуль, распознающий замыкание этого типа. Из всех общих модулей составляют для каждой фазы линии электропередачи две группы - блокирующую и разрешающую. В блокирующую группу собирают общие модули тех типов замыканий, в которых данная фаза не повреждена, а в разрешающую группу - общие модули остальных типов замыканий, в которых данная фаза повреждена. Далее констатируют замыкание в данной фазе при условии, что не сработал ни один из общих модулей блокирующей группы и сработал хотя бы один из общих модулей разрешающей группы. Дополнительно используют передающую модель неповрежденной линии электропередачи, преобразующую наблюдаемые в начале линии токи и напряжения в напряжения в конце линии, и определяют замеры как отношения одноименных напряжений на выходе и на входе передающей модели. 1 з.п. ф-лы, 16 ил.

Использование: в области электротехники и электроэнергетики. Технический результат заключается в расширении функциональных возможностей и в упрощении способа. Генератор наблюдают со стороны линейных и нулевых выводов. Фиксируют момент смены предшествующего режима текущим режимом. Алгоритмическую модель активируют источниками напряжений текущего режима. Определяют ее реакцию в виде первых токов обмотки статора. Если генератор не поврежден, то первые токи будут близки к наблюдаемым, так как модель в этом случае адекватна реальному объекту. В случае повреждения генератора адекватность нарушается, и тогда различие между первыми токами и наблюдаемыми величинами физически предопределена. Данное обстоятельство используют для распознавания аварийных ситуаций в генераторе, опираясь на вторые токи как разности между соответствующими наблюдаемыми и первыми токами. Согласно способу используется базис комплексных величин, в котором составляют отдельные автономные модули алгоритмической модели. Таких модулей три: предшествующего режима, прямой последовательности и обратной последовательности. Первые два активные - в их состав входит один и тот же источник напряжения. Третий модуль - пассивный. Поскольку генератор полагают неповрежденным, становится очевидной предложение проводить обучение релейной защиты только теми режимами, когда замыкание, если оно есть, происходит не в генераторе, а во внешней части сети. Результатами такого обучения становятся области блокирования защиты, тем более мелкие, чем более адекватна имитационная модель сети реальному объекту. Обучение проводят на плоскостях двумерных сигналов. В комплексной форме двумерный сигнал определяют в виде отношения вторых токов к соответствующим первым токам. 2 з.п. ф-лы, 12 ил.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений. Способ заключается в фиксации отсчетов токов и напряжений, наблюдаемых в линии в текущем и в предшествующем режимах, преобразовании отсчетов в комплексы токов и напряжений текущего и предшествующего режимов, использовании передающей модели, преобразующей комплексы наблюдаемых токов и напряжений предшествующего и текущего режимов в комплексы напряжений и токов соответствующих режимов в месте предполагаемого повреждения, преобразовании комплексов напряжения и тока предшествующего и текущего режимов этого места в комплекс основного замера и определении с его использованием координаты места повреждения линии электропередачи. Согласно способу комплексы электрических величин в месте предполагаемого повреждения преобразуют еще и в комплекс дополнительного замера, используют имитационную модель линии электропередачи для обучения передающей модели интервальному определению места повреждения, для чего воспроизводят в имитационной модели режимы повреждения линии и определяют в этих режимах области отображения комплексов основного и дополнительного замеров на соответствующих плоскостях. При наблюдении линии электропередачи определяют для разных мест предполагаемого повреждения отображения комплексов основного и дополнительного замеров на соответствующих плоскостях, фиксируют те места линии, для которых отображения как основного замера, так и дополнительного попадают в соответствующие области, и объединяют указанные места в интервал повреждения линии электропередачи. 1 з.п. ф-лы, 17 ил.

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и расширение функциональных возможностей способа дальнего резервирования. Согласно способу фиксируют токи и напряжения в начале линии, используют передающую модель линии со входом в месте наблюдения и выходами в ответвлениях, формируют двумерные сигналы, по одному для каждого ответвления, и задают на плоскости каждого двумерного сигнала области срабатывания защиты. Передающую модель выполняют с дополнительным выходом в конце линии и с основными выходами на шинах нагрузок ответвлений, двумерные сигналы формируют в виде комплексных замеров, определяют дополнительный замер для конца линии, а основные замеры - для нагрузок ответвлений, на плоскостях всех замеров задают области блокирования защиты. Блокируют защиту, если все замеры отображаются в соответствующих областях блокирования, в противном случае разрешают срабатывание защиты, если по меньшей мере один основной замер отображается в своей области срабатывания. 3 з.п. ф-лы, 9 ил.

Использование – в области электротехники. Технический результат – расширение функциональных возможностей обучаемой релейной защиты. Согласно способу релейной защиты энергообъекта в составе электрической сети путем преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения релейной защиты от первой имитационной модели сети, воспроизводящей контролируемые режимы энергообъекта, и от второй имитационной модели, воспроизводящей режимы сети, альтернативные контролируемым режимам энергообъекта, раздельного отображения множества контролируемых режимов и соответственно, множества альтернативных режимов, в виде первых и, соответственно, вторых областей на плоскостях двумерных сигналов, фиксации токов и напряжений в местах наблюдения энергообъекта в текущем режиме повреждения и в предшествующем режиме, наблюдаемые токи и напряжения текущего и, соответственно, предшествующего режимов преобразуют в первые и, соответственно, вторые напряжения, для чего обрабатывают наблюдаемые величины в передающей модели неповрежденного энергообъекта, из каждой пары первых и соответствующих вторых напряжений формируют двумерный сигнал и разрешают срабатывание защиты, если при наблюдении энергообъекта каждый двумерный сигнал отображается в соответствующей первой области, но при этом не каждый двумерный сигнал отображается в соответствующей второй области. 4 з.п. ф-лы, 10 ил.

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и расширение функциональных возможностей способа дальнего резервирования. Согласно способу фиксируют токи и напряжения в начале линии, используют передающую модель линии со входом в месте наблюдения и выходами в ответвлениях, формируют двумерные сигналы, по одному для каждого ответвления, и задают на плоскости каждого двумерного сигнала области срабатывания защиты. Передающую модель выполняют с дополнительным выходом в конце линии и с основными выходами на шинах нагрузок ответвлений, двумерные сигналы формируют в виде комплексных замеров, определяют дополнительный замер для конца линии, а основные замеры - для нагрузок ответвлений, на плоскостях всех замеров задают области блокирования защиты. Блокируют защиту, если все замеры отображаются в соответствующих областях блокирования, в противном случае разрешают срабатывание защиты, если по меньшей мере один основной замер отображается в своей области срабатывания. 3 з.п. ф-лы, 9 ил.

Использование – в области электротехники. Технический результат – расширение функциональных возможностей обучаемой релейной защиты. Согласно способу релейной защиты энергообъекта в составе электрической сети путем преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения релейной защиты от первой имитационной модели сети, воспроизводящей контролируемые режимы энергообъекта, и от второй имитационной модели, воспроизводящей режимы сети, альтернативные контролируемым режимам энергообъекта, раздельного отображения множества контролируемых режимов и соответственно, множества альтернативных режимов, в виде первых и, соответственно, вторых областей на плоскостях двумерных сигналов, фиксации токов и напряжений в местах наблюдения энергообъекта в текущем режиме повреждения и в предшествующем режиме, наблюдаемые токи и напряжения текущего и, соответственно, предшествующего режимов преобразуют в первые и, соответственно, вторые напряжения, для чего обрабатывают наблюдаемые величины в передающей модели неповрежденного энергообъекта, из каждой пары первых и соответствующих вторых напряжений формируют двумерный сигнал и разрешают срабатывание защиты, если при наблюдении энергообъекта каждый двумерный сигнал отображается в соответствующей первой области, но при этом не каждый двумерный сигнал отображается в соответствующей второй области. 4 з.п. ф-лы, 10 ил.

Использование: в области электроэнергетики. Технический результат - повышение распознающей способности защиты по отношению к короткому замыканию в защищаемой зоне. Согласно способу входные комплексные величины преобразуют и вторые группы токов и напряжений, которые далее в модели неповрежденной части линии преобразуют в третьи напряжения и третьи токи, из первых напряжений и вторых токов формируют первую трехфазную комплексную мощность, из третьих напряжений и токов - вторую подобную мощность, формируют универсальный замер защиты как отношение второй трехфазной мощности к первой и задают на плоскости данного замера характеристику срабатывания защиты и вызывают срабатывание исполнительного блока, если указанный комплексный замер находится в области, ограниченной заданной характеристикой срабатывания. При этом первые величины относятся к текущему режиму электропередачи. Вторые величины - это аварийные составляющие токов и напряжений. Третьи напряжения - это результат преобразования первых величин, а третьи токи – результат преобразования вторых величин. 12 ил., 1 табл.

Изобретение относится к области электроэнергетики и направлено на построение универсальной защиты трансформатора, использующей имеющуюся информацию в максимально полном объекте. Поставленная задача решается путем использования моделей обмоток трансформатора, а также моделей его магнитопровода. Задействуется информация о наблюдаемых токах и напряжениях всех обмоток, а также априорная информация о параметрах обмоток и магнитопровода. Аварийное состояние трансформатора распознается по критерию адекватности моделей реальному объекту. Способ защиты включает наблюдение отсчетов токов и напряжений, их интерполяционное преобразование в непрерывные входные величины, используемые в моделях, формирование двумерных выходных сигналов, на плоскостях отображения которых задают области срабатывания релейной защиты. Новыми являются операции преобразования входных величин вплоть до формирования выходных сигналов. Первые обмотки - те, модели которых должны быть задействованы в начале преобразований. Входные токи и напряжения этих моделей преобразуются в производную потоков стержней, на которых располагаются первые обмотки. Модели других обмоток используются иначе. Для них входными величинами становятся производные магнитных потоков и собственные токи, а выходными - напряжения на зажимах. Формируют разностные напряжения, указывающие несоответствие между напряжениями, полученными в результате наблюдения объекта и путем его моделирования. Аналогично используют модели независимых контуров магнитопровода, в которых определяются падения магнитных напряжений. Один путь их определения - через потоки стержней. О неадекватности модели и объекта судят как по электрическим, так и магнитным разностным напряжениям. Двумерные электрические и магнитные сигналы образуются из разностных и базовых напряжений. Характеристики срабатывания защиты задают на плоскостях отображения двумерных сигналов. 10 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа. Согласно способу выделяют две подсистемы, соприкасающиеся в месте замыкания. Для первой подсистемы составляют преобразовательную модель, а для второй - имитационную. Входы преобразовательной модели соответствуют входам первой подсистемы, а выход - месту предполагаемого замыкания. Входы имитационной модели подразделены на основные, соответствующие входам второй подсистемы, и дополнительный, соответствующий месту предполагаемого замыкания. Роль преобразовательной модели заключается в формировании напряжений места предполагаемого замыкания из непрерывных напряжений и токов, полученных для входов первой подмодели. Имитационную модель активируют, воздействуя на ее основные входы непрерывными напряжениями входов второй подмодели. На дополнительный вход воздействуют выходными сигналами преобразовательной модели. Реакцию имитационной модели определяют только на основных входах. Это токи, созданные воздействиями на все входы модели. На заключительном этапе определяют разности между непрерывными токами на основных входах, полученными из наблюдаемых токов, и реакцией модели. Уровень разностных токов несет информацию о том, правильно ли сделано предположение о месте повреждения. Нулевой уровень свидетельствует о совпадении реального места с предполагаемым. 1 табл., 7 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа путем обеспечения защиты любых энергообъектов с моделями любого типа и с произвольным объемом наблюдения объекта. Согласно способу входы объекта соответствуют входам модели. Чтобы активировать модель, на ее входы необходимо подать одну из наблюдаемых на соответствующем входе объекта величин. Наблюдению подлежат все входы и выходы, но необязательно полностью. Полному наблюдению подлежит как минимум один вход. Таким образом, наблюдение осуществляется «с избытком». Все входы и выходы разделяются на три группы. В первую группу включаются полностью наблюдаемые входы и выходы. Во вторую - наблюдаемые только по напряжению, в третью - только по току. Модель объекта активируется путем воздействия на первые и вторые входы и выходы модели источниками наблюдаемых напряжений, на третьи - источниками наблюдаемых токов. Определяют реакцию активированной модели на приложенные воздействия, причем в качестве реакции выделяют только токи первых входов и выходов модели. Определяют разностные сигналы как разности между токами, наблюдаемыми на первых входах и выходах объекта и соответствующими реакциями модели. Характеристики срабатывания защиты задают на основе замеров, формируемых с участием разностных сигналов. 9 ил.

Использование: в области электроэнергетики. Технический результат - повышение быстродействия релейной защиты. Данный способ обнаруживает аварийные режимы объекта, отличающиеся друг от друга по времени распознавания. Делается это с привлечением имитационных моделей контролируемого объекта. Моделируются два типа взаимно противостоящих режимов: первый - короткие замыкания в защищаемой зоне; второй - все прочие режимы, когда срабатывание защиты запрещается. Имитационные модели подают на релейную защиту токи и напряжения в режимах обоих типов и тем самым проводят обучение релейной защиты. Электрические величины представляют в дискретной форме. Отсчеты величин режима короткого замыкания преобразуют в промежуточные текущие величины. Преобразование совершается в нарастающем окне наблюдения на каждом шаге увеличения окна. Из промежуточных величин формируют текущий замер. Обучение выполняют на каждом шаге, получая столько характеристик срабатывания, сколько шагов, начиная со второго, предусмотрено для обучения защиты. Для дистанционной защиты линий электропередачи промежуточными величинами являются комплексные сигналы, изменяющиеся с каждым шагом наблюдения. В рамках предлагаемого способа дана реализация фильтра ортогональных составляющих, формирующего текущие комплексные сигналы. Частным случаем этого фильтра, работающего на произвольном окне наблюдения, является широко применяемый фильтр Фурье, для которого окно наблюдения кратно полупериоду частоты сети. 1 з.п. ф-лы, 3 ил.

Использование: в области электротехники. Технический результат - повышение быстродействия определения синусоидальной составляющей с возможностью контроля достоверности результата. Согласно способу выполняют операцию аналого-цифрового преобразования наблюдаемого тока, предварительно подавляют синусоидальную составляющую с помощью заграждающего фильтра и фиксируют отсчеты его выходного сигнала. При этом производят дополнительную интервальную обработку в том же фильтре специально подобранных опорных сигналов. Дополнительная обработка проводится на тех же текущих интервалах времени, что и основная операция подавления входного сигнала. Форма опорных сигналов задается жестко, но с сохранением зависимости от варьируемых параметров. Значения параметров определяют из условия равенства отсчетов основного и дополнительного выходного сигналов. Опорные сигналы, параметры которых определены, действуют только на собственных интервалах времени. Апериодическую составляющую формируют из интервальных опорных сигналов. 3 з.п. ф-лы, 3 табл., 12 ил.

Изобретение относится к электроэнергетике, а именно к релейной защите и автоматике распределительных сетей, работающих в режиме с изолированной нейтралью. Сущность: используется модель контролируемого фидера. Входные величины - комплексные фазные токи и напряжения, получаемые в результате наблюдения фидера в его начале. В месте предполагаемого повреждения на нагрузочную часть модели фидера воздействуют трехфазным источником напряжений, полученных для этого места. Фиксируют реакцию нагрузочной части модели в виде нормальных токов фидера. Находят локальные токи фидера как разности фазных токов, полученных для этого места, и составляющих нормальных токов. Сравнивают уровни локальных токов фаз фидера на его входе. Две фазы фидера с более высокими уровнями локальных токов идентифицируют как поврежденные. Определяют токи предполагаемых замыканий в поврежденных фазах как разности локального тока поврежденной фазы и локального тока неповрежденной третьей фазы в месте предполагаемого замыкания. Преобразуют фазное напряжение и ток предполагаемого замыкания каждой из двух поврежденных фаз в два информационных параметра места предполагаемого замыкания. Определяют ближайшее к началу фидера место перехода одного из информационных параметров через нулевое значение как первое место замыкания фидера, а ту фазу фидера, которой принадлежит этот параметр, идентифицируют как первую поврежденную фазу фидера. Укорачивают модель фидера на длину неповрежденной части от входа фидера до места первого замыкания. В качестве входных напряжений укороченной модели принимают фазные напряжения в месте первого замыкания. В качестве входных токов второй и третьей фаз укороченной модели принимают фазные токи в месте первого замыкания. В качестве входного тока первой фазы принимают разность между соответствующим фазным током и током замыкания. Преобразуют в укороченной модели фидера ее входные токи и напряжения во вторичные фазные величины места второго предполагаемого замыкания. Определяют ток второго замыкания, преобразуют вторичное фазное напряжение второй поврежденной фазы фидера и ток второго замыкания в информационные параметры мест предполагаемых повреждений этой фазы и определяют координату второго замыкания фидера на землю. Технический результат: упрощение способа и расширение его функциональных возможностей. 4 з.п. ф-лы, 10 ил.

Изобретение относится к релейной защите и автоматике распределительных сетей, характеризующихся малыми установившимися токами при однофазных замыканиях. Сети - сложной конфигурации с большим числом ответвлений. Известный путь выявления замыканий - распределенное наблюдение сети во многих точках с концентрацией информации в нескольких местах и последующей передачей информации в диспетчерский пункт. Предлагаемый способ решает задачу более просто и без ущерба для потребителя. Сеть наблюдается только на входах, т.е. на шинах питающей подстанции и на выходах, т.е. у потребителя. Ключевая идея связана с обнаружением двух новых компонентов у аварийных составляющих наблюдаемых токов и напряжений. Первый компонент является реакцией нормальной, т.е. неповрежденной, модели сети на источники наблюдаемых напряжений. Второй, наиболее важный с информационной точки зрения, представляет собой особую аварийную составляющую. Режим особых составляющих токов возникает в модели сети с зашунтированными входами и выходами. Распознавание поврежденного участка сети стало возможным благодаря разработке новых операций перемещения шунта с входа фидера к ближайшему узлу и далее, если потребуется, к другим узлам по очереди. При этом всякий раз уровень особых составляющих токов подсказывает, какие из ветвей сети не повреждены. Процедура раз за разом укорачивает модель, пока не выявит поврежденный участок сети. 12 ил.

Использование: в области электротехники. Технический результат - повышение точности определения места замыкания. Согласно способу регистрируют информационные составляющие наблюдавшихся токов и напряжений на концах фидера и используют их в качестве входных напряжений и первых входных токов модели фидера. При этом на входы модели неповрежденного фидера подают соответствующие напряжения, определяют вторые входные токи как реакции модели на приложенные напряжения, определяют третьи токи как разности соответствующих первого и второго токов, контролируют уровни третьих токов и степень их идентичности на противоположных входах модели, и в случае нулевого уровня третьего тока одного из входов констатируют замыкание на другом входе фидера. В случае идентичности третьих токов констатируют замыкание в середине фидера, а в случае превышения уровня третьим током одного из входов уровня третьего тока другого входа констатируют замыкание в половине фидера с большим током. Шунтируют оба входа модели, разделяют модель на подмодели поврежденной и неповрежденной половин фидера, третий ток соответствующего зашунтированного входа модели принимают в качестве первого тока подмодели поврежденной половины фидера, а первый ток и напряжение другого входа этой подмодели формируют в подмодели неповрежденной половины фидера из третьего тока ее зашунтированного входа. Повторяют в подмодели поврежденной половины фидера с одним зашунтированным входом те же операции определения вторых и третьих токов, контроля уровня третьих токов и степени их идентичности, определения поврежденной половины модели, которые были ранее выполнены в исходной модели фидера, и повторяют указанные операции до тех пор, пока не обнаружат идентичность третьих входных токов подмодели фидера, свидетельствующую о замыкании в середине моделируемого участка фидера, или нулевой уровень одного из третьих входных токов, свидетельствующий о замыкании на другом входе. 1 з.п. ф-лы, 4 ил.

Использование: в области электротехники. Технический результат - повышение надежности защиты. Предлагаемый способ основан на симбиозе прямой и косвенной адаптации. Согласно способу применяется три типа сигналов и, соответственно, три разнотипных групп аналогичных реле, а также групп исполнительных реле, в которые входят по одному представителю от каждой группы аналогичных реле. Проводят операции обучения реле второго типа, реагирующих на величины текущего режима, и реле третьего типа, реагирующих на виртуальные величины, формируемые с участием аварийных составляющих токов. Реле первого типа обучению не подлежат. Их характеристики задаются жестко, путем разбиения на части области отображения замеров, формируемых из величин предшествующего режима. При этом реле первого типа управляют процессом обучения реле второго и третьего типа, входящих в одну с ним исполнительную группу. 5 з.п. ф-лы, 6 ил.

Использование: в области электроэнергетики. Технический результат - повышение точности. Согласно способу составляют модели двух частей фидера, первой - от места наблюдения до места предполагаемого замыкания и второй - от места предполагаемого замыкания до конца фидера, первую часть фидера моделируют по прямой и по нулевой последовательности, а вторую - только по нулевой последовательности, преобразуют в модели прямой последовательности безнулевые составляющие зафиксированных тока и напряжения поврежденной фазы в безнулевую составляющую напряжения поврежденной фазы в месте предполагаемого замыкания, преобразуют в модели нулевой последовательности первой части фидера нулевые составляющие зафиксированных токов и напряжений в напряжение нулевой последовательности в месте предполагаемого замыкания и в ток нулевой последовательности до этого места, суммируют два упомянутых напряжения, формируя напряжение поврежденной фазы в месте предполагаемого замыкания, подают напряжение нулевой последовательности в месте предполагаемого замыкания на вход модели нулевой последовательности второй части фидера и фиксируют ток на ее входе, который вычитают из тока нулевой последовательности до этого места, формируя ток предполагаемого замыкания, перемножают напряжение и ток в месте предполагаемого замыкания, формируя сигнал мгновенной мощности предполагаемого места замыкания, определяют знак этого сигнала и фиксируют реальное замыкание в том месте, где упомянутый сигнал в процессе своего изменения остается неотрицательным. 10 ил.

Использование: в области электроэнергетики. Технический результат - повышение эффективности и простоты способа. Согласно способу фиксируют аварийные составляющие фазных напряжений и токов на обеих сторонах линии, вычитают из них составляющие нулевой последовательности, формируя тем самым первые напряжения и токи, составляют для всех фаз линии электропередачи двухпроводные модели прямой последовательности, которые используют в двух режимах - пассивном и активном. В пассивном режиме на входы обеих сторон моделей подают первые напряжения, а в активном режиме входы обеих сторон моделей шунтируют, определяют реакции пассивных моделей в виде вторых входных токов, определяют третьи токи, протекающие на зашунтированных входах активных моделей, вычитая вторые токи из соответствующих первых токов, находят соотношение между третьими токами противоположных сторон каждой модели и по указанным соотношениям определяют место замыкания линии электропередачи. 4 з.п. ф-лы, 15 ил.

Использование: в области электроэнергетики. Технический результат - повышение эффективности и простоты способа. Согласно способу фиксируют фазные напряжения и токи на обеих сторонах линии, выделяют их аварийные составляющие, разделяют напряжения и токи на составляющие нулевой последовательности и безнулевые составляющие - разности фазных напряжений (токов) и их составляющих нулевой последовательности. Составляют двухпроводные модели линии электропередачи прямой последовательности и нулевой последовательности, которые используют в двух режимах - пассивном и активном. В пассивном режиме на входе первой стороны модели подают первые напряжения, равные соответствующим указанным напряжениям прямой или нулевой последовательности, а на вход второй стороны модели подают первые токи, равные соответствующим указанным токам прямой или нулевой последовательности, а в активном режиме вход первой стороны модели шунтируют, а вход второй стороны - размыкают. Определяют реакцию пассивной модели в виде второго тока на входе первой стороны модели и второго напряжения на входе второй стороны модели, определяют третий ток как разность первого и второго тока на первом входе модели и третье напряжение как разность первого и второго напряжения на втором входе модели, находят соотношение между третьим напряжением и третьим током, по которому определяют место замыкания линии электропередачи. 5 з.п. ф-лы, 19 ил.

Изобретение из области электроэнергетики касается построения микропроцессорной релейной защиты, а именно этапов ее обучения, задания характеристики срабатывания и функционирования в рабочем режиме. Обучение осуществляется от имитационных моделей защищаемого объекта. Входные величины защиты преобразуют в двумерный сигнал, отображаемый на плоскости. Обучающие двумерные сигналы определяют область срабатывания защиты. Технический результат - повышение чувствительности защиты путем полного учета особенностей области срабатывания. Предлагается задавать характеристику в виде последовательных граничных двумерных сигналов, охватывающих область срабатывания защиты. Изобретение указывает операции, задающие условия срабатывания защиты, если характеристика срабатывания носит дискретную форму, т.е. состоит из отдельных точек на плоскости. Текущий двумерный сигнал, поступающий от реального объекта, сравнивают с четырьмя типами граничных сигналов, располагающихся на плоскости соответственно выше, ниже, правее и левее текущего сигнала. В дополнительных пунктах формулы изобретения раскрываются модификации условий срабатывания. В первой модификации ограничиваются только одним граничным сигналом каждого из четырех типов, а во второй - двумя, т.е. четырьмя парами сигналов, и каждая пара задает свою уставку срабатывания по своему направлению. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области релейной защиты и автоматики. Сущность: фиксируют с заданной частотой дискретизации отсчеты напряжения нулевой последовательности на общих шинах и отсчеты токов нулевой последовательности в каждом фидере распределительной сети. Осуществляют цифро-аналоговое преобразование отсчетов напряжения нулевой последовательности и подают преобразованное напряжение на вход модели каждого фидера по нулевой последовательности, причем модели составляют для нормального состояния фидеров. Выполняют аналого-цифровое преобразование тока нулевой последовательности модели каждого фидера с заданной частотой дискретизации. Определяют расхождение между отсчетами тока нулевой последовательности каждого реального фидера и отсчетами тока его модели. По величине расхождения выявляют поврежденный фидер. Технический результат: повышение селективности. 3 з.п. ф-лы, 6 ил.

Изобретение относится к релейной защите и автоматике электрических систем. Сущность: контролируемая сеть наблюдается на обеих сторонах. Наблюдения синхронизированы, происходит обмен информацией между концевыми подстанциями. Используется модель контролируемой сети с тремя участками. Модель задает операции преобразования наблюдаемых токов и напряжений. Первые два участка преобразуют наблюдаемые сигналы в напряжения двух разных предполагаемых повреждений, а также в токи, подводимые к этим местам от концевых подстанций. Третий участок преобразует указанные напряжения в два других тока, протекающих за местами повреждений. Пары токов преобразуются в дифференциальные токи первого и второго мест повреждения. По напряжениям и токам каждого предполагаемого повреждения определяют их реактивные и активные мощности. Фиксируют координаты обоих мест повреждения, если обе реактивные мощности переходят через нулевые значения, а обе активные мощности неотрицательны. Технический результат: расширение функциональных возможностей. 3 ил.

Изобретение относится к электроэнергетике, конкретнее - к релейной защите и автоматике электрических систем. Сущность: определение места повреждения выполняется в два этапа. На первом этапе полагают, что повреждены все провода. Определяют место повреждения по токам и напряжениям всех проводов до и после мест предполагаемых повреждений. Определяют для каждого провода сигнал абсолютного значения разности модулей токов до и после обнаруженного на первом этапе места повреждения, сигнал абсолютного значения разности модулей напряжений до и после этого места, сдвиг фаз между напряжением и током каждого провода до этого места и сдвиг фаз между напряжением и током после этого места, сигнал абсолютного значения разности первого и второго сдвигов фаз. Сравнивают три упомянутых разностных сигнала каждого провода с соответствующими порогами. Подразделяют провода сети на неповрежденные и поврежденные, для чего относят к первым те провода, все три разностных сигнала которых не превысили своих порогов. На втором этапе определяют место повреждения по токам и напряжениям только вторых проводов до и после мест предполагаемых повреждений. Технический результат: повышение точности и расширение функциональных возможностей. 1 з.п. ф-лы, 7 ил.

Изобретение относится к электроэнергетике и электротехнике, конкретно к релейной защите и автоматике электрических систем

Изобретение относится к релейной защите и автоматике линий электропередачи и предназначено для случая, когда наблюдение сети производится с обеих сторон без синхронизации наблюдений

Изобретение относится к электроэнергетике и электротехнике и может быть использовано во всех видах защит, преимущественно микропроцессорных

Изобретение относится к области электротехники и может быть использовано в системах релейной защиты и автоматики электрических систем

Изобретение относится к области электротехники и электроэнергетики и может быть использовано во всех видах защит, преимущественно микропроцессорных

Изобретение относится к релейной защите электрических систем или любых иных энергообъектов

Изобретение относится к области электротехники и электроэнергетики и связано с обучением релейной защиты

Изобретение относится к релейной защите, затрагивает цифровую обработку входных величин, имеет приложение к пусковым органам, модулям восстановления нелинейно искаженного тока, селекторам режимов энергообъекта

Изобретение относится к электротехнике и электроэнергетике, конкретно к релейной защите, и может быть применено вне зависимости от состава информационной базы защиты и вида энергообъектов
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх