Патенты автора Балашов Сергей Александрович (RU)

Изобретение относится к металлургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. Осуществляют размещение металлической заготовки с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионно-стойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя. В процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а в процессе переплава электрода из коррозионностойкой стали, содержащей 0,1-0,5% титана, производят равномерное добавление в металлическую ванну алюминия с расходом 1-4 г на 1 кг наплавляемого металла и титана с расходом 1-3 г на 1 кг наплавляемого металла, а переплав проводят под шлаком, содержание SiO2 в котором составляет не более 1%. Изобретение обеспечивает минимизацию угара титана и повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов при сохранении высокой прочности и сплошности соединения слоев и технологичности. 1 пр., 3 табл.
Изобретение относится к металлургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. Осуществляют размещение металлической заготовки с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионностойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя, на заготовке основного слоя толщиной 150-300 мм при ширине 1000-1600 мм формируют наплавленный слой, толщина которого составляет 5-30% от общей толщины слитка, согласно изобретению в процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а переплав электрода из коррозионностойкой стали, содержащей 0,3-0,6% титана, проводят под шлаком, содержащим 1-5% TiO2. Изобретение обеспечивает минимизацию угара титана и повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов при сохранении высокой прочности и сплошности соединения слоев и технологичности. 1 пр., 2 табл.
Изобретение относится к специальной электрометаллургии, конкретнее к электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. В процессе переплава расходуемого электрода производят равномерное добавление в металлическую ванну алюминия и титана с расходом не менее 6 и 3 г на 1 кг наплавляемого металла соответственно, а переплав проводят при значении электросопротивления шлаковой ванны в интервале 3,3-3,9 мОм. Изобретение позволяет повысить коррозионную стойкость наплавленного слоя биметаллических слитков и листов, а также снизить их себестоимость при сохранении высокой прочности и сплошности соединения слоев и технологичности. 1 пр., 2 табл.
Изобретение относится к специальной электрометаллургии, конкретнее к производству, с использованием электрошлаковой технологии, биметаллических слитков, состоящих из основного слоя из углеродистой, низколегированной или легированной стали и наплавленного слоя из коррозионностойкой стали, предназначенных для последующей прокатки на биметаллические полосы и листы. Техническим результатом данного изобретения является повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов, а также снижение их себестоимости при сохранении высокой прочности и технологичности. Технический результат достигается тем, что в способе получения биметаллического слитка, включающем размещение металлической заготовки, являющейся основным слоем биметаллического слитка, с зазором от стенки кристаллизатора, установку в данном зазоре расходуемого электрода из коррозионностойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя толщиной 5-30% от общей толщины слитка на заготовке основного слоя толщиной 150-300 мм, шириной 1000-1600 мм, согласно изобретению в процессе переплава расходуемого электрода из стали, легированной 0,5-1% титана, производят равномерное добавление в металлическую ванну алюминия и титана с расходом не менее 3 г и 2 г на 1 кг наплавляемого металла соответственно, при этом переплав проводят под шлаком, содержание в котором SiO2 составляет не более 2%. 3 табл.
Изобретение относится к производству толстых листов из низколегированных малоуглеродистых сталей на реверсивном стане. Осуществляют прокатку промежуточных заготовок из непрерывнолитой заготовки, их резку в меру и обработку лицевой поверхности, сборку нарезанных промежуточных заготовок в пакетную заготовку с ее обваркой по периметру, вакуумирование этой пакетной заготовки, нагрев в печи и последующее пластическое деформирование методом многопроходной горячей прокатки. Прокатку промежуточных заготовок производят на две толщины. Пакетную заготовку для горячей прокатки собирают из трех промежуточных заготовок – в качестве центральной промежуточной заготовки используют более толстую заготовку, а в качестве наружных промежуточных заготовок используют более тонкие заготовки одинаковой толщины. После сварки и вакуумирования полученную пакетную заготовку нагревают до температуры 1175-1240°С со скоростью не выше 75°С/час с последующей выдержкой 8-11 часов и подвергают реверсивной прокатке по схеме продольной протяжки. Температуру конца прокатки устанавливают не ниже 750°С с последующим охлаждением на воздухе. В результате уваливается прочность проката, имеющего требуемые механические свойства. 1 з.п. ф-лы, 1 пр.
Изобретение относится к области металлургии, а именно к производству высокопрочного износостойкого металлопроката в виде листов толщиной от 2,0 до 20,0 мм, используемого для горно-шахтного оборудования, ковшей экскаваторов, рыхлителей, футеровки кузовов самосвалов. Выплавляют сталь, содержащую, мас.%: углерод 0,25-0,40, кремний не более 1,40, марганец 0,40-1,00, хром 0,80-1,40, никель не более 2,0, медь не более 0,20, титан 0,02-0,08, ванадий не более 0,03, ниобий не более 0,10, молибден 0,10-0,50, азот не более 0,010, алюминий 0,01-0,08, бор 0,001-0,005, сера не более 0,005, фосфор не более 0,015, железо и неизбежные примеси остальное, причем углеродный эквивалент Сэкв стали составляет не более 0,84. Осуществляют разливку стали в виде непрерывнолитых заготовок, их нагрев, черновую прокатку в раскат промежуточной толщины, чистовую прокатку раската в лист конечной толщины, смотку или термическую обработку в виде закалки и отпуска и последующее охлаждение на спокойном воздухе. Черновую прокатку ведут до толщины раската, кратной не менее 2,5 толщин готового листа. По одному варианту чистовую прокатку начинают при температуре не более 980°С и завершают при температуре 820-880°С, закалку проводят при температуре 910-950°С, а отпуск проводят при температуре 150-260°С, при этом после чистовой прокатки размер аустенитного зерна составляет не более 40 мкм, а структура листа после закалки и отпуска состоит из мартенсита. По второму варианту чистовую прокатку заканчивают при температуре не более 980°С, а смотку проводят при температуре 640-720°С. Обеспечивается получение листов толщиной 2-20 мм с твердостью по Бринеллю от 480 до 610 НВ и гарантированной ударной вязкостью не менее 30 Дж. 2 н.п. ф-лы, 6 табл.

Изобретение относится к металлургии и может быть использовано для изготовления толстых листов для металлоконструкций ответственного назначения, применяемых в судостроении, топливно-энергетическом комплексе, тяжелом машиностроении, в том числе для конструкций, работающих при высоких (до 250°C) температурах. Способ производства горячекатаных листов из низколегированной стали для изготовления ответственных металлоконструкций, включающий аустенизацию непрерывнолитых заготовок, черновую прокатку, чистовую прокатку и охлаждение листов. Заготовки получают из стали, содержащей, мас.%: C 0,07-0,12, Si 0,16-0,35, Mn 1,25-1,75, Al 0,02-0,05, Ti 0,010-0,035, Mo 0,15-0,30, S не более 0,006, P не более 0,012, N не более 0,009, Cr+Ni+Cu 0,35-0,7, V+Nb 0,05-0,16, Fe и неизбежные примеси. Коэффициент трещиностойкости при сварке Pcm составляет 0,23% или менее, при этом аустенизацию непрерывнолитых заготовок проводят в диапазоне температур 1180-1250°С, черновую прокатку начинают при температуре не ниже 950°С и осуществляют с относительным обжатием за проход не менее 10% до толщины, составляющей 2-3,5 толщины готового листа, чистовую прокатку начинают при температуре 750-800°С и заканчивают при температуре 750-820°С с получением листов толщиной от 16 до 70 мм, затем проводят охлаждение листов толщиной от 16 до 40 мм или ускоренное охлаждение листов толщиной от более 40 до 70 мм с последующей термической обработкой. Получают листы толщиной от 16 до 70 мм для изготовления металлоконструкций с гарантированной хладостойкостью при пониженных температурах до минус 60°C и высокими прочностными свойствами, сохраняющимися при повышенных температурах эксплуатации, вплоть до плюс 250°C. 4 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области металлургии, а именно к составам высокопрочных сталей, используемых в бронезащитных конструкциях. Сталь содержит, мас.%: углерод 0,20-0,35, кремний 0,7-1,5, марганец 0,2-1,1, хром 0,5-1,2, никель 1,0-1,9, молибден 0,05-0,45, алюминий 0,005-0,15, азот не более 0,02, медь не более 0,5, титан 0,001-0,3, ванадий не более 0,4, ниобий 0,001-0,3, бор не более 0,015, железо остальное. Сталь может дополнительно содержать, мас.%: не более 0,0005 кислорода, не более 0,0005 водорода, не более 0,25 мышьяка и не более 0,015 олова, свинца, цинка и сурьмы каждого. Сталь имеет мартенсито-бейнитную структуру с содержанием остаточного аустенита до 5%, причем микроструктура содержит неметаллические включения со средним размером не более 10 мкм. 2 н. и 5 з.п. ф-лы, 3 табл.

Изобретение относится к сталям, используемым в качестве конструкционных материалов в судостроении, энергетике, машиностроении. Сталь содержит 0,1-0,8 мас.% углерода, 0,001-0,9 мас.% кремния, 10,0-22,0 мас.% марганца, 1,5-4,5 мас.% алюминия, не более 0,8 мас.% хрома, не более 0,8 мас.% никеля, не более 0,8 мас.% меди, не более 0,05 мас.% серы, не более 0,05 мас.% фосфора, не более 0,015 мас.% азота, один или несколько компонентов из группы, содержащей молибдена в количестве 0,0005-0,01 мас.%, ванадия - 0,0005-0,01 мас.%, кальция – 0,0001-0,005 мас.% и ниобия - 0,0005-0,01 мас.%, остальное - железо и неизбежные примеси. Обеспечивается горячая технологическая пластичность, легкость механической обработки, хорошая свариваемость и уровень магнитной проницаемости (μ), стабильно не превышающей 1,01 Гс/Э. 7 з.п. ф-лы, 2 табл., 1 пр.
Изобретение может быть использовано при производстве многослойных плакированных листов и плит горячей прокаткой с различными вариантами основного и плакирующего слоя (слоев), в частности, для изготовления листов с высокой коррозионной стойкостью рабочих поверхностей. После подготовки контактных поверхностей плакирующего и плакируемого металлических листов наносят на плакирующий лист приваркой взрывом промежуточный слой с получением промежуточной двухслойной заготовки. Собирают пакет, нагревают его и деформируют горячей прокаткой до заданной толщины изготавливаемого плакированного металлического листа. В качестве промежуточного слоя используют лист металла, одинаковый по химическому составу с металлом плакируемого листа и толщина которого меньше, чем толщина плакируемого листа. При сборке пакета полученную промежуточную двухслойную заготовку размещают с одной или обеих сторон плакируемого листа. 5 з.п. ф-лы, 1 пр.

Изобретение относится к области металлургии, а именно к производству горячекатаного проката повышенной прочности из низколегированной стали, предназначенного для изготовления деталей большегрузных автомобилей, подъемно-транспортных механизмов и сельскохозяйственных машин методом штамповки, гибки и профилирования. Способ включает выплавку стали, содержащей, мас.%: углерод 0,03-0,12, кремний 0,10-0,50, марганец 1,5-2,0, серу не более 0,008, фосфор не более 0,015, хром 0,01-0,30, никель 0,01-0,30, медь 0,01-0,30, алюминий 0,01-0,06, ниобий 0,001-0,10, азот 0,002-0,010, ванадий 0,001-0,10, титан 0,001-0,10, молибден 0,005-0,30, кальций 0,0003-0,005, бор 0,0001-0,005, железо и неизбежные примеси остальное, в т.ч. олово, свинец, цинк - не более 0,010 каждого, водород не более 0,001. Горячую прокатку в чистовой группе клетей при температуре не более 950°C с кратностью подката не менее пяти номинальных толщин готового проката. При этом конец чистовой прокатки регламентируют в диапазоне 750-860°C. Смотку полосы при температуре не более 480°C. При этом режим ускоренного охлаждения назначают исходя из термокинетических диаграмм распада переохлажденного аустенита для обеспечения бейнито-мартенсито-ферритной структуры с долей бейнито-мартенситной фазы не менее 90%. Техническим результатом является получение горячекатаного проката требуемого класса прочности с гарантированным уровнем работы удара при -20°C и относительного удлинения. 2 з.п. ф-лы, 3 табл., 1 ил.

Изобретение относится к области металлургии, конкретно к производству горячекатаной полосы толщиной 4-9 мм повышенной прочности, предназначенной для изготовления деталей автомобиля методом штамповки и профилирования. Для повышения прочностных характеристик при сохранении штампуемости выплавляют сталь, содержащую, мас.%: углерод 0,06-0,15, кремний 0,1-0,50, марганец 1,35-2,0, серу не более 0,012, фосфор не более 0,020, хром 0,01-0,30, никель 0,01-0,30, медь 0,01-0,30, алюминий 0,01-0,06, ниобий 0,01-0,10, азот 0,002-0,010 и один или несколько элементов из группы: ванадий 0,02-0,15, титан 0,01-0,15, молибден 0,003-0,35, кальций 0,0003-0,005, бор 0,0001-0,005, олово не более 0,015 железо и неизбежные примеси - остальное, при этом суммарное содержание ниобия, ванадия и титана не превышает 0,22%, разливают сталь и проводят горячую прокатку. Горячую прокатку в чистовой группе клетей осуществляют при температуре входа раската не более 1020°С с суммарной степенью деформации не менее 78% и температурой конца прокатки в диапазоне 770-850°С, затем полосу охлаждают водой и сматывают при 480-560°С. Полученная полоса класса прочности 500-550 имеет преимущественно феррито-перлитную структуру, а класса прочности 600-650 - феррито-бейнитно-перлитную структуру. 4 з.п. ф-лы, 5 табл.

Изобретение относится к области металлургии, конкретно к составу низкоуглеродистой стали, предназначенной для изготовления деталей автомобиля методом штамповки

Изобретение относится к области обработки металлов давлением, в частности к технологии листовой прокатки на широкополосовом стане

 


Наверх