Патенты автора Пуйша Александр Эдуардович (RU)

Изобретение относится к способу подводной лазерной резки металлических конструкций и может быть использовано для подводных строительных работ, ремонта подводных трубопроводов, демонтажа металлических сооружений и конструкций, разделки на части затонувших объектов при их подъеме, а также в атомной отрасли для разделки корпусов ядерных реакторов. Способ включает нагрев участка разрезаемой поверхности металла, находящейся в водной среде, до температуры плавления или выше посредством лазерного излучения передаваемого по волоконно-оптическому каналу и оптической системе, фокусирующей лазерное излучение с торца волоконно-оптического канала на разрезаемую поверхность. Формирование газового пузыря осуществляют над местом реза. Для резки формируют два газовых пузыря за счет двух газовых потоков - основного и дополнительного. Формирование основного газового пузыря осуществляют коаксиально с лазерным излучением. Газы подают перед или за пятном сфокусированного лазерного излучения. Вспомогательный газовый пузырь формируют при помощи дополнительного сопла, установленного под углом к поверхности реза. Газы в основной и дополнительный газовые потоки подают в определенной последовательности при сохранении их постоянного массового или объемного расхода. Способ обеспечивает повышение производительности процесса разделки металлических конструкций под водой, увеличение толщины разрезаемого металла и повышение уровня безопасности при проведении работ по разделке под водой металлоконструкций. 3 ил.

Изобретение относится к области оптического приборостроения и касается осветителя жидкокристаллического дисплея коллиматорного авиационного индикатора. Осветитель содержит несколько лазерных полупроводниковых излучателей, излучающих в зеленой области спектра, коллимирующие линзы, оптические клинья, направляющие излучение на гомогенизатор, и конденсор. Гомогенизатор состоит из двух наборов цилиндрических линз, расположенных взаимно перпендикулярно относительно друг друга, и находится в фокусе конденсора. Технический результат заключается в повышении максимальной яркости индицируемого изображения и обеспечении возможности его комфортного восприятия во всем диапазоне яркости окружающего пространства. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области испытаний оптико-электронных и оптико-механических устройств и касается вакуумно-криогенного стенда. Стенд включает в себя вакуумно-криогенную камеру, охлаждаемые радиационные экраны, универсальный и динамический источники излучения, коллиматор, поворотное и ломающие зеркала, спектрорадиометр, систему криогенного обеспечения, систему вакуумирования, модуль канала оптического фона и интерферометр сдвига. При этом охлаждаемые внутрикамерные функциональные оптико-механические устройства выполнены в виде отдельных модулей, установленных в собственных секциях вакуумно-криогенной камеры, имеющих свои охлаждаемые экраны и собирающихся по мере необходимости в единый функционирующий имитационно-испытательный блок. Технический результат заключается в уменьшении габаритов, сокращении пускового периода и уменьшении энергопотребления устройства. 2 ил.

Изобретение может быть использовано в системах управления и самонаведения летательных аппаратов, например ракет. Головка самонаведения содержит оптическую систему, выполненную с возможностью угловых отклонений относительно двух ортогональных осей подвеса по команде от двухосевой системы стабилизации и слежения, последовательно соединенные блок обнаружения и распознавания, блок выделения координат заданной точки цели и блок управления слежением, а также блок памяти и хранения эталонного изображения цели, задаваемого в виде предстартового полетного задания. Введены лазерный излучатель подсвета цели, плоские наклонные зеркала, спектроделитель, первый и второй узкополосные оптические фильтры, первый и второй объективы, лазерный дальномер, блок синхронизации и стробирования. Технический результат - обеспечение надежного и высокоточного функционирования в любое время суток при снижении уровней освещенности, плохой видимости в различных погодных условиях и при организованном противодействии. 2 ил.

Изобретение относится к области оптического приборостроения. Светодиодное устройство согласно изобретению включает один или несколько излучателей-чипов, установленных по любой топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, и пластину из оптического материала, размещенную без воздушного промежутка на плоской поверхности геля. На внутренней стороне пластины, граничащей с гелем, нарезаны взаимноперпендикулярные канавки, грани которых наклонены к поверхности геля на угол α=55°…65°, глубина нарезки канавок не более h=0,8 мм. Вершины канавок образуют квадраты, стороны которых составляют D=(1,75…2,3)Dc, где Dc - размер стороны чипа, причем D=D0, где D0 - расстояние между оптическими осями излучателей-чипов, при этом оптические оси квадратов нарезки и соответствующих чипов совпадают. Изобретение обеспечивает повышение энергетических параметров устройства, а именно значительное увеличение осевой силы света и уменьшение энергетических потерь за счет увеличения угла охвата излучения кристалла чипа до σ1=±75°. 2 ил.

Изобретение относится к области оптического приборостроения, а именно к классу мощных светодиодов, которые используются в качестве аналогов галогенных ламп, а также для потолочных, индустриальных, фасадных и других светильников. Светодиодное устройство состоит из одного или нескольких излучателей-чипов, установленных по любой топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, причем над каждым чипом поверхность, граничащая с воздухом, является сферической или асферической с радиусом при вершине не более 4 мм. Диаметр этой поверхности составляет D=(1,75…2,3)Dc, где Dc - размер излучающей поверхности чипа, при этом оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм. Поверхность, граничащая с воздухом, может иметь над каждым чипом по всему периметру поверхности устройство, ограничивающее размер D, причем высота h и ширина t этого устройства не превышает (0,1…0,15)D. Поверхность, граничащая с воздухом, может быть выполнена на плоскоыпуклой линзе из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом. Изобретение обеспечивает повышение энергетических параметров устройства, а именно значительное увеличение осевой силы света за счет увеличения угла охвата излучения кристалла до σ1=±65°, при этом потери чипа уменьшаются до δE=6%. 2 з.п. ф-лы, 4 ил.

Изобретение относится к оптическому приборостроению и может быть использовано в военной технике при создании ракет с оптическими головками самонаведения (ОГС)

Изобретение относится к области оптического приборостроения, а более конкретно, к группе оптических приборов наблюдения статического обзора типа "стеклоблок", и может быть использовано для оснащения инженерных машин, работающих в экстремальных, особо опасных для жизни человека условиях, в частности при проведении работ по ликвидации последствий крупномасштабных аварий и катастроф на предприятиях атомной энергетики и промышленности, поиску источников ионизирующих излучений на местности, а также для установки в специальных камерах в качестве приборов наблюдения при проведении научных исследований с использованием источников высокоинтенсивного гамма-нейтронного излучения

Изобретение относится к области оптического приборостроения, а именно к классу осветительных и сигнальных систем, и может быть использовано на различных видах транспорта, например на автомобильном, железнодорожном и морском транспорте, а также для внутреннего освещения различных помещений, наружной подсветки, для построения рекламных светящихся экранов, светофоров и других источников информации типа бегущей строки, табло и т.д

 


Наверх