Патенты автора Рыженков Вячеслав Алексеевич (RU)

Изобретение относится к области машиностроения, в частности к защитным покрытиям стальных деталей, подверженных при работе нагрузкам при повышенных температурах и воздействию агрессивных сред. Способ включает очистку изделия и вакуумной камеры в среде инертного газа, ионное травление и ионно-плазменное азотирование поверхности изделия, формирование покрытия физическим осаждением из паровой фазы, при этом после ионно-плазменного азотирования производят дополнительное ионное травление, причем в процессе ионных травлений проводят обработку поверхности импульсным магнетронным разрядом с плотностью мощности 0,03-0,1 кВт/см2, формирование покрытия осуществляют сначала нанесением на поверхность изделия микрослоя из титана, хрома общей толщиной 0,5-0,7 мкм, состоящего из нанослоев толщиной 10-100 нм, затем в камеру подают азот и формируют микрослой из нитридов титана, хрома общей толщиной 2,8-3,3 мкм, состоящий из нанослоев толщиной 10-100 нм, при этом в процессе нанесения микрослоев осуществляют обработку поверхности импульсным магнетронным разрядом с плотностью мощности от 0,1 до 8 кВт/см2. Изобретение позволяет повысить срок службы изделий в условиях эрозии, коррозии и высоких температур. 3 з.п. ф-лы, 1 табл.
Изобретение относится к области машиностроения, в частности к методу образования защитного нанокомпозитного покрытия на поверхности изделия из жаропрочного никелевого сплава, подверженного высоким температурам и механическим нагрузкам. Проводят очистку изделия и вакуумной камеры в среде инертного газа, осуществляют ионное травление, после которого осуществляют ионно-плазменную цементацию, дополнительно проводят ионное травление поверхности изделия и нанесение покрытия методом физического осаждения из паровой фазы. Ионно-плазменную цементацию с последующим ионным травлением проводят поэтапно с числом этапов N, причем N≥1, до насыщения углеродом приповерхностного слоя упомянутого изделия на глубину до 50 мкм. На поверхность изделия наносят не менее одного микрослоя из нихрома и сплава алюминия с кремнием, который состоит из нанослоев указанных материалов толщиной 1-100 нм, а затем наносят микрослой из нанослоев оксидов нихрома и сплава алюминия с кремнием толщиной 1-100 нм. В частных случаях осуществления изобретения общая толщина микрослоя из нихрома и сплава алюминия с кремнием составляет 2,3-3,0 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов из указанных материалов. Толщина микрослоя из оксидов нихрома и сплава алюминия с кремнием составляет 0,5-1,5 мкм, при этом указанный микрослой наносят путем последовательного прохождения изделия перед мишенями магнетронов из указанных материалов при подаче в камеру кислорода. Обеспечивается повышение долговечности и жаростойкости никелевого сплава в условиях высокотемпературного окисления и эрозионного воздействия. 2 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к области машиностроения, к способам образования защитных покрытий на изделиях, имеющих тонкостенные и толстостенные части и выполненных из стали или титанового сплава. Проводят очистку изделий в вакуумной камере в среде инертного газа, затем осуществляют ионное травление, ионно-плазменное азотирование, чередующееся с ионным травлением, и нанесение нанокомпозитного покрытия методом физического осаждения из паровой фазы посредством магнетронов. Температуру тонкостенных и толстостенных частей изделий выравнивают во время очистки изделий в среде инертного газа, ионного травления, ионно-плазменного азотирования, чередующегося с ионным травлением, и нанесения нанокомпозитного покрытия путем размещения изделий так, чтобы тонкостенная часть одного изделия располагалась между толстостенными частями других изделий. Упомянутое нанесение нанокомпозитного покрытия проводят путем нанесения микрослоя из нанослоев толщиной 1-100 нм из титана и хрома и последующего нанесения микрослоя из нанослоев толщиной 1-100 нм из нитридов титана и хрома. В частных случаях осуществления изобретения микрослой из титана и хрома наносят толщиной 0,3-0,8 мкм путем последовательного прохождения изделия перед магнетронами с мишенями из указанных материалов. Микрослой из нитридов титана и хрома наносят толщиной 2,5-3 мкм путем последовательного прохождения изделия перед магнетронами с мишенями из титана и хрома при подаче в камеру азота. Повышается срок службы покрытия в условиях эрозии, коррозии и высоких температур. 2 з.п. ф-лы, 1 табл., 1пр.
Изобретение относится к области машиностроения, в частности к способам нанесения защитных покрытий. Может использоваться в энергетическом машиностроении для защиты деталей, подверженных механическим нагрузкам, высоким температурам и воздействию агрессивной рабочей среды. Перед нанесением покрытия на поверхность изделия проводят откачку воздуха из вакуумной камеры, очистку поверхности изделия и вакуумной камеры в среде инертного газа, ионное травление и ионно-плазменное азотирование поверхности изделия. Покрытие формируют путем нанесения микрослоя из нанослоев титана и алюминия толщиной 1-100 нм и микрослоя из нанослоев нитрида титана и нитрида алюминия толщиной 1-100 нм. После нанесения каждого из микрослоев проводят ионную очистку поверхности аргоном в течение 10 мин при давлении 1,5 Па и напряжении смещения 1150 В. Нанесение микрослоев с последующей ионной очисткой осуществляют в N этапов, где N - целое число и N ≥ 1, до формирования защитного покрытия общей толщиной 5,8-7,2 или более. Обеспечивается повышение срока службы покрытия в условиях эрозии, коррозии и высоких температур. 3 з.п. ф-лы, 1 табл.

Использование: в области электроэнергетики. Технический результат -повышение эффективности. Способ предотвращения обледенения электрического провода заключается в нанесении гидрофобного покрытия на провода, расположенные между точками его закрепления, провод подвергают механическому воздействию с частотой 5-20 Гц генератором колебаний, расположенным на проводе посередине между точками закрепления проводов, а нанесение гидрофобного покрытия осуществляют помещением провода в субстанции ПАВ из класса алифатических аминов, например октадециламина или флотамина. В качестве субстанции ПАВ можно использовать водную эмульсию ПАВ из класса алифатических аминов, например октадециламина, или раствор этанола ПАВ из класса алифатических аминов, например октадециламина. На поверхности провода сформировано гидрофобное покрытие 4, которое сформировано путем нанесения на провод субстанции, содержащей поверхностно-активное вещество из класса алифатических аминов. В качестве указанной субстанции может быть использована водная эмульсия алифатического амина или его раствор в этаноле. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области теплоизоляции трубопроводов и позволяет повысить механическую прочность покрытия. Способ включает подготовку подлежащей теплоизоляции поверхности очисткой ее от продуктов коррозии, нанесение теплоизоляционного слоя и полимеризацию полученного покрытия. Подготовленную поверхность нагревают до температуры 70-230°C и наносят слой праймера в виде порошкового связующего материала, на котором располагают теплоизоляционный слой, выполненный из m теплоизолирующих слоев, где m - целое число и выбрано из условия m≥1. Каждый теплоизолирующий слой состоит из порошкового связующего материала и микросфер, поверх которого наносят экранирующий слой, содержащий порошковый связующий материал и частицы с высокой отражательной способностью, на который наносят покровный слой в виде связующего материала. При этом полимеризацию осуществляют путем подогрева после нанесения каждого слоя до температуры 70-230°C, а нанесение каждого слоя осуществляют электростатическим способом. Техническим результатом является снижение тепловых потерь с теплоизолируемой поверхности и увеличение адгезии теплоизоляции к теплоизолируемой поверхности. 2 з.п. ф-лы, 1 ил.
Изобретение относится к трубопроводным системам, теплообменному оборудованию и позволяет улучшить гидродинамические и термодинамические характеристики поверхностей изделий из металлов и сплавов
Изобретение относится к трубопроводной транспортировке жидких сред

Изобретение относится к области защиты от коррозии и образования отложений на функциональных поверхностях трубопроводов систем теплоснабжения и водоснабжения

Изобретение относится к области теплоэнергетики, в частности к теплоизоляции трубопроводов, и может быть использовано в системах теплоснабжения и горячего водоснабжения

Изобретение относится к области защиты систем теплоснабжения от коррозии и накопления отложений

Изобретение относится к области теплоэнергетики и может быть использовано в системах централизованного теплоснабжения

Изобретение относится к области систем вентиляции, может быть применено в системах обеспечения искусственного климата

Изобретение относится к области теплоэнергетики и может быть использовано в системах централизованного теплоснабжения

Изобретение относится к области центробежных насосов

Изобретение относится к области теплоизоляции и может быть использовано в системах теплоснабжения и горячего водоснабжения

Изобретение относится к области центробежных насосов

Изобретение относится к способу нанесения нанокомпозитных покрытий на плоские поверхности деталей и устройству для его реализации
Изобретение относится к способам ингибирования коррозии и отложений на металлических поверхностях
Изобретение относится к области машиностроения, в частности к методам образования защитных покрытий на деталях, подверженных механическим нагрузкам, высоким температурам, воздействию агрессивной рабочей среды

Изобретение относится к области геотермальной энергетики
Изобретение относится к теплоэнергетике и предназначено для использования при эксплуатации систем отопления жилых зданий и повысить эффективность и ресурс систем теплоснабжения, снизить капитальные и эксплуатационные затраты

Изобретение относится к теплоэнергетике и предназначено для использования в системах централизованного и автономного теплоснабжения жилых и производственных помещений
Изобретение относится к теплоэнергетике, позволяет повысить экономичность, эффективность, надежность и ресурс трубопроводных систем

 


Наверх