Патенты автора Никитин Алексей Константинович (RU)

Изобретение относится к оптике конденсированных сред и может быть использовано для определения диэлектрической проницаемости металлических и металлизированных отражающих поверхностей в терагерцовом диапазоне спектра (частота от 0.1 ТГц до 10 ТГц), способных направлять поверхностные плазмон-поляритоны (ППП) - разновидность поверхностных электромагнитных волн, а также для оптической спектроскопии и контроля качества таких поверхностей. Повышение достоверности получаемого предлагаемым способом значения диэлектрической проницаемости металла достигается в результате радикального уменьшения радиационной составляющей потерь ППП путем нанесения на исследуемую плоскую грань образца однородного слоя непоглощающего диэлектрика, что обеспечивает значительное преобладание джоулевых потерь ППП над их радиационными потерями. В этом случае, длина распространения ППП определяется, главным образом, джоулевыми потерями, учитываемыми дисперсионным уравнением ППП; радиационные же потери ППП это уравнение, используемое для расчета диэлектрической проницаемости εм металла, не учитывает. 1 ил., 1 табл.

Использование: для получения инфракрасного спектра поглощения поверхностных плазмон-поляритонов (ППП) тонким слоем вещества. Сущность изобретения заключается в том, что осуществляют нанесение тонкого слоя вещества на плоскую грань металлической подложки, генерацию на грани широкополосных ППП тепловыми флуктуациями плотности электронов проводимости, измерение спектров порождаемого ППП объемного излучения до и после нанесения слоя, расчет спектра поглощения слоя по результатам измерений, отличающийся тем, что регистрируют излучение с трека ППП после пробега ими по содержащему слой участку грани расстояния, превышающего длину распространения ППП с наибольшей частотой рабочего спектрального интервала. Технический результат: обеспечение возможности получения неискаженного ИК-спектра поглощения ППП тонким слоем вещества и повышение чувствительности способа пассивной абсорбционной ППП-спектроскопии. 2 ил.

Изобретение относится к оптическим методам контроля качества поверхности полупроводниковых и металлических изделий, в которых взаимодействие зондирующего излучения с поверхностью опосредовано поверхностной электромагнитной волной (ПЭВ), возбуждаемой падающим излучением и направляемой поверхностью. Заявленный способ визуализации неоднородностей плоской полупроводниковой поверхности в терагерцовом излучении включает воздействие на поверхность р-поляризованным излучением, для которого вещественная часть диэлектрической проницаемости полупроводника отрицательна, преобразование излучения в направляемые поверхностью поверхностные плазмон-поляритоны (ППП) и измерение интенсивности излучения, испускаемого с трека ППП. Излучение выбирают монохроматическим с частотой, при которой длина распространения ППП не превышает длину волны излучения, пучок зондирующего излучения коллимируют и направляют под углом генерации ППП на основание призмы нарушенного полного внутреннего отражения, обращенное к контролируемому участку поверхности и размещенное параллельно ему в пределах глубины проникновения поля ППП в окружающую среду. При этом регистрируют пространственное распределение интенсивности излучения одновременно по всему поперечному сечению пучка, выходящего из призмы. Технический результат – создание способа визуализации неоднородностей плоской поверхности полупроводника в терагерцовом излучении, основанного на преобразовании зондирующего излучения в поверхностные плазмон-поляритоны (ППП), направляемые контролируемой поверхностью, и детектировании излучения, испускаемого с трека ППП вследствие сохранения их оптической связи с элементом преобразования, и позволяющего упростить процедуру измерений, уменьшить ее трудоемкость и продолжительность, а также повысить латеральное разрешение измерений. 2 ил.

Устройство относится к области информационных технологий, реализуемых с использованием поверхностных электромагнитных волн (ПЭВ) инфракрасного и терагерцового диапазонов. Устройство содержит источник излучения с плоским волновым фронтом, поляризационный конвертер, придающий излучению радиальную поляризацию, круговую фазовую дифракционную решетку, преобразующую плоскую волну в суперпозицию конически сходящихся к ее оптической оси плоских волн, и проводник, торец которого ориентирован перпендикулярно плоскости падения излучения. Часть цилиндрической поверхности проводника содержит эшелетт, штрихи которого перпендикулярны плоскости падения и имеют наклон, обеспечивающий совпадение диаграммы направленности первого дифракционного максимума с цилиндрической поверхностью проводника. Излучение падает на эшелетт под рассчитываемым углом ϕ, обеспечивающим равенство тангенциальной составляющей волнового вектора излучения волновому вектору ПЭВ. Технический результат - повышение эффективности преобразования монохроматического инфракрасного или терагерцового излучения в поверхностную электромагнитную волну на цилиндрическом проводнике. 1 ил.

Изобретение относится к оптике терагерцового (ТГц) диапазона и может быть использовано для поляризации и амплитудной модуляции ТГц излучения без использования мобильных оптических устройств, размещаемых на пути пучка излучения. Суть изобретения заключается в том, что поляризатор, содержащий прозрачную среду со сформированной в ней из проводящего материала объемной дифракционной решеткой, щели которой ориентированы перпендикулярно направлению распространения излучения, дополнительно содержит герметичный контейнер, снабжен входным и выходным окнами, ориентированными перпендикулярно пучку излучения, а также источником ультразвука, испускающим пересекающую световой пучок волну, и плоским рефлектором, отражающим звук в обратном направлении, причем средой формирования решетки выбрана заполняющая контейнер жидкость, содержащая взвешенные в ней углеродные нанотрубки. Изобретение обеспечивает возможность регулирования степени поляризации контролируемого излучения без механического перемещения устройства или образующих его элементов. 1 ил.
 // 

Изобретение относится к области зондирования удаленных объектов электромагнитным излучением и касается способа обнаружения объекта на выпуклой металлической поверхности за линией ее горизонта. Способ включает в себя генерацию на поверхности коллимированного пучка плазмон-поляритонов (ППП) с длиной распространения, сравнимой с расстоянием от источника ППП до объекта. Пучок направляют по нормали к линии горизонта, сканируют ее пучком, регистрируют отраженное объектом излучение в форме ППП и определяют наличие объекта за линией горизонта по результатам измерений. Технический результат заключается в обеспечении возможности обнаружения на металлической поверхности объектов, находящихся за линией горизонта, и их частичной локализации. 1 ил.

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП). Интерферометр содержит источник коллимированного р-поляризованного монохроматического излучения, элемент преобразования излучения в пучок ППП, твердотельный образец с плоской гранью, способной направлять ППП, делитель исходного пучка ППП в форме плоскопараллельной пластинки, наклоненной на 45° к плоскости падения излучения, примыкающей своим ребром к грани и ориентированной перпендикулярно к ней, неподвижное и подвижное плоские зеркала, примыкающие кромкой отражающей поверхности к грани, ориентированные перпендикулярно к ней, однопиксельное фотоприемное устройство, размещенное у участка ребра грани, освещаемого обоими вторичными пучками, и устройство обработки информации. Технический результат – повышение точности. 2 ил.

Изобретение относится к области исследования поверхности металлов и полупроводников оптическими методами и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник р-поляризованного монохроматического излучения, твердотельный плоскогранный образец с направляющей волну гранью, элемент преобразования излучения в ПЭВ, элемент преобразования ПЭВ в объемную волну, подвижную платформу, способную перемещаться параллельно этой грани вдоль трека ПЭВ, размещенное на платформе зеркало, ориентированное перпендикулярно к волноведущей грани и примыкающее к ней своей отражающей поверхностью, фотоприемник, измерительный прибор и делитель пучка ПЭВ. Делитель пучка выполнен в виде частично прозрачной плоскопараллельной пластинки, ориентированной перпендикулярно к грани образца и под углом 45° к плоскости падения излучения. Зеркало выбрано плоским и ориентированным перпендикулярно к плоскости падения. Фотоприемник размещен у кромки грани в плоскости перпендикулярной плоскости падения. Технический результат заключается в сокращении числа входящих в состав устройства элементов, упрощении процедуры измерений и повышении соотношения сигнал/шум. 1 ил.

Изобретение относится к области исследования поверхности металлов и полупроводников путем измерения характеристик направляемых ей поверхностных электромагнитных волн (ПЭВ) и может найти применение в сенсорных устройствах, абсорбционных спектрометрах и интерферометрах, использующих в качестве носителя информации поверхностные плазмон-поляритоны (ППП), являющиеся разновидностью ПЭВ. Техническим результатом является повышение эффективности преобразования монохроматического ИК излучения в поверхностную электромагнитную волну на плоской грани проводящего тела. Устройство для преобразования ИК излучения в ПЭВ на плоской грани проводящего тела содержит источник р-поляризованного монохроматического излучения, оптический объектив, цилиндрический сегмент, выпуклая поверхность которого способна направлять ПЭВ, покрыта слоем диэлектрика субволновой толщины, имеет перпендикулярную плоскости падения излучения осевую линию, ограничена двумя остроугольными ребрами в направлении, перпендикулярном плоскости падения, имеет линию пересечения с этой плоскостью короче длины распространения ПЭВ и сопряжена одним из ребер с плоской гранью тела, поглощающий экран, расположенный над треком ПЭВ вне ее поля и ориентированный перпендикулярно как к грани, так и к плоскости падения, объектив выбран коллимационным. Выпуклая поверхность сегмента снабжена планарной дифракционной решеткой, штрихи которой перпендикулярны плоскости падения. Источник и объектив укреплены на платформе, способной перемещаться по дуге, ось которой совпадает с центральным штрихом решетки. 1 ил.

Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства для определения длины распространения поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство содержит источник излучения, цилиндрический фокусирующий объектив, твердотельный образец со способной направлять ПЭВ плоской прямоугольной гранью, элемент преобразования излучения источника в коллимированный пучок ПЭВ, лучеразделитель, расщепляющий пучок на два вторичных пучка, и два фотоприемника, размещенных у освещаемых вторичными пучками участков ребер грани. Элемент преобразования изготовлен в форме цилиндрического сегмента, примыкающего одним из ребер выпуклой поверхности к грани образца. Лучеразделитель выполнен в виде плоской светоделительной пластинки, установленной на грани образца и ориентированной перпендикулярно к ней таким образом, что пластинка пересекает трек ПЭВ, исходящих от элемента преобразования, под углом 45°, причем один из фотоприемников размещен в плоскости падения излучения, а второй - в плоскости, перпендикулярной к ней. Технический результат заключается в повышении соотношения сигнал/шум и упрощении процедуры измерений. 1 ил.

Изобретение относится к акустооптике и может найти применение для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Устройство для наблюдения обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в кристаллической среде содержит источник излучения, светоделитель, фотоприемник, электроизмерительный прибор, кристаллическую среду в форме прямой призмы, излучатель ультразвукового пучка, размещенный на боковой грани призмы и имеющий с ней акустический контакт. Входная грань, через которую излучение поступает в призму, образует с гранью, содержащей излучатель, угол, обеспечивающий возможность ввода излучения из окружающей среды в призму, прохождение излучения через призму, минуя излучатель, и совпадение трека пучка излучения, преломленного на входной грани, с треком отраженного от нее ультразвукового пучка. Грань, через которую пучок преломленного излучения покидает призму, не перпендикулярна ему. Изобретение обеспечивает реализацию обратной коллинеарной дифракции терагерцового излучения на ультразвуковой волне в кристаллической среде. 1 ил.

Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство включает в себя источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования излучения источника в пучок ПЭВ, образец, имеющий плоскую грань и способный направлять ПЭВ, элемент для разделения исходного пучка ПЭВ на два вторичных пучка, два фокусирующих объектива и два фотоприемника, размещенных в фокусах этих объективов и сопряженных с измерительными приборами. Элемент для разделения пучка ПЭВ выполнен в виде плоской светоделительной пластинки с известными коэффициентами отражения и пропускания данной ПЭВ, ориентированной перпендикулярно грани образца, примыкающей к ней и пересекающей исходный пучок ПЭВ. Технический результат заключается в повышении точности и упрощении процедуры измерений. 1 ил.

Изобретение относится к области бесконтактного исследования поверхности металлов и полупроводников и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник p-поляризованного монохроматического излучения, цилиндрический фокусирующий объектив, твердотельный плоскогранный образец с направляющей волну гранью, элемент преобразования излучения в ПЭВ, выполненный в виде цилиндрического сегмента, элемент преобразования ПЭВ в объемную волну, идентичный элементу преобразования излучения в ПЭВ, подвижную платформу, размещенное на платформе уголковое зеркало, плоскость симметрии которого параллельна плоскости падения излучения, фотоприемник и подключенный к нему измерительный прибор. Устройство дополнительно содержит непрозрачный экран, разделяющий элементы преобразования, которые, в свою очередь, примыкают к одному ребру волноведущей грани, противолежащему отражающим поверхностям зеркала и перпендикулярному к его плоскости симметрии. Элементы преобразования равноудалены от плоскости симметрии зеркала, а платформа может перемещаться вдоль плоскости падения излучения. Технический результат заключается в сокращении числа входящих в состав устройства зеркал и количества отражений ПЭВ зеркалами в процессе измерений. 1 ил.

Использование: для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Сущность изобретения заключается в том, что акустооптическая ячейка (АО-ячейка) содержит герметичный контейнер с прозрачной для излучения и ультразвука жидкостью, а также излучатель ультразвука, погруженный в жидкость, причем контейнер снабжен двумя прозрачными для излучения окнами из материала с показателем преломления, близким к показателю преломления жидкости, а выходное окно не перпендикулярно преломленному на входном окне пучку излучения, кроме того, излучатель ориентирован таким образом, чтобы испускаемый им звуковой пучок падал на входное окно под углом, обеспечивающим совмещение отраженного звукового пучка и пучка излучения, преломленного на этом окне. Технический результат: обеспечение возможности разработки АО-ячейки для реализации обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в жидкости. 1 ил.

Изобретение относится к области оптических измерений и касается интерферометра для определения показателя преломления инфракрасной поверхностной электромагнитной волны (ПЭВ). Интерферометр содержит источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с плоской гранью, способной направлять ПЭВ, делитель пучка ПЭВ, плоское зеркало, заслонку, линейку фотоприемников, размещенную в плоскости грани, и устройство обработки информации. Плоское зеркало примыкает своим ребром к направляющей ПЭВ грани, ориентировано перпендикулярно к ней и пересекает трек ПЭВ. Делитель выполнен в виде полупрозрачной плоскопараллельной пластинки, примыкающей своим ребром к грани образца, ориентированной перпендикулярно к ней и пересекающей трек ПЭВ. Заслонка позволяет поочередно перекрывать интерферирующие вторичные пучки ПЭВ. Технический результат заключается в упрощении устройства и процедуры обработки результатов измерений. 3 ил.

Устройство для вариативной одноцветной спектроскопии «накачка-зондирование» в терагерцовом диапазоне содержит перестраиваемый по частоте источник монохроматического излучения, первую пропускающую дифракционную решетку и вторую пропускающую дифракционную решетку. Вторая решетка оптически параллельно связана с прерывателем светового потока и первым плоским зеркалом. Первое плоское зеркало связано с оптической линией задержки светового пучка, вторым плоским зеркалом, фокусирующим объективом, исследуемым образцом, открытой частью апертуры и детектором излучения. Прерыватель светового потока оптически связан с третьим и четвертым плоскими зеркалами, фокусирующим объективом, исследуемым образцом и закрытой частью апертуры. Технический результат заключается в сокращении продолжительности измерений, за счет исключения необходимости перенастройки элементов устройства, и расширении класса исследуемых веществ. 2 ил.

Изобретение относится к области оптических измерений и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство включает в себя источник монохроматического излучения, твердотельный образец с направляющей волну плоской гранью, элемент преобразования излучения в ПЭВ, регулируемую оптическую линию задержки, элемент преобразования ПЭВ в объемную волну, фотоприемник и измерительный прибор. Элемент преобразования излучения в ПЭВ выполнен в виде цилиндрического сегмента, ось которого перпендикулярна плоскости падения излучения, а его выпуклая поверхность примыкает к грани образца и имеет протяженность линии пересечения с плоскостью падения меньше длины распространения ПЭВ. Элемент преобразования ПЭВ в объемную волну идентичен элементу преобразования излучения источника в ПЭВ. Линия задержки состоит из четырех зеркал, ориентированных перпендикулярно к поверхности образца и примыкающих к ней. Одна пара зеркал линии фиксирована на треке в плоскости падения, а вторая размещена на подвижной платформе, перемещение которой ограничено вдоль оси симметрии линии. Технический результат заключается в повышении соотношения сигнал/шум и воспроизводимости результатов измерений. 1 ил.

Изобретение относится к области оптики и касается способа генерации непрерывного широкополосного инфракрасного излучения с регулируемым спектром. Способ включает в себя нагрев металлического тела, содержащего две смежные плоские грани, генерацию оптическими фононами тела на одной из граней широкополосных поверхностных плазмон-поляритонов (ППП), дифракцию ППП на ребре, сопрягающем грани, и преобразование ППП в результате дифракции в объемное излучение. Регулирование амплитудно-частотного спектра излучения осуществляют путем изменения температуры тела и размера части направляющей ППП грани, наблюдаемой с ребра в перпендикулярном к нему направлении. Технический результат заключается в обеспечении возможности оперативного управления амплитудно-частотным спектром ансамбля гармонических компонент генерируемого ИК излучения. 3 ил.

Изобретение относится к области оптических измерений и касается способа определения диэлектрической проницаемости металла в терагерцовом диапазоне спектра. Способ включает в себя возбуждение зондирующим пучком поверхностной электромагнитной волны (ПЭВ) на плоской поверхности металлического образца, измерение длины распространения ПЭВ и определение ее фазовой скорости, расчет комплексного показателя преломления ПЭВ по означенным ее характеристикам и определение диэлектрической проницаемости металла путем решения дисперсионного уравнения ПЭВ для волноведущей структуры, содержащей поверхность образца. При проведении измерений на поверхность предварительно наносят однородный слой диэлектрика с известными оптическими постоянными толщиной от сотой до десятой доли длины волны излучения источника. Технический результат заключается в повышении точности измерений.

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского зеркала, отражающая грань которого наклонена относительно нормали к поверхности образца в сторону направления распространения волны, регистрацию отраженного зеркалом излучения и расчет показателя по результатам измерений. Регистрацию излучения осуществляют на поверхности образца. Зеркало размещают в плоскости, не содержащей нормаль к плоскости падения излучения. При проведении измерений плавно увеличивают от нуля угол α между нормалью к плоскости образца и зеркалом, фиксируют такое его значение α*, при котором интенсивность регистрируемого излучения обнуляется. Величину показателя рассчитывают по формуле: Технический результат заключается в уменьшении продолжительности и трудоемкости измерений. 3 ил.

Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий цилиндрический объектив, элемент преобразования излучения в ПЭВ, образец с направляющей волну плоской поверхностью, пересекающее трек ПЭВ плоское зеркало, размещенный над треком вне поля ПЭВ второй фокусирующий цилиндрический объектив, фотодетекторы, измерительные приборы и устройство обработки информации. Отражающая грань плоского зеркала образует с поверхностью образца тупой угол, причем обращенное к этой поверхности ребро плоского зеркала параллельно ей и удалено от нее на расстояние, превышающее глубину проникновения поля ПЭВ в окружающую среду. Верхняя точка отражающей грани зеркала в плоскости падения удалена от образца на расстояние h, определяемое соотношением: h≥x⋅tg(α), где x - расстояние от элемента преобразования до проекции верхней точки отражающей грани на трек, α - угол наклона максимума диаграммы направленности объемного излучения с трека ПЭВ. Технический результат заключается в увеличении отношения сигнал/шум и повышении точности измерений. 1 ил.

Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью и перемещаемую вдоль трека платформу. На платформе установлен фокусирующий объектив, фотоприемник, измерительный прибор и стойка. На стойке установлены амортизированная пружинами рамка и регулировочный микровинт, сочлененный с размещенной внутри рамки площадкой, несущей элемент преобразования ПЭВ в ОВ. Пружины, упираясь в стойку, поджимают рамку к образцу, а сама рамка опирается на поверхность образца перемещающимися по ней упорами. Элемент преобразования излучения в ПЭВ выполнен в виде сектора цилиндра, ось которого ориентирована перпендикулярно плоскости падения излучения, а выпуклая поверхность этого элемента, способная направлять ПЭВ, сопряжена своим ребром с поверхностью образца и имеет протяженность трека меньше длины распространения ПЭВ. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к области оптического приборостроения и касается способа управления спектром пучка широкополосного терагерцевого излучения. Способ включает в себя размещение на пути пучка излучения селективно поглощающего фильтра в виде поверхности проводящей пластины, придание излучению p-поляризации, преобразование поляризованного излучения в пучок направляемых поверхностью поверхностных плазмон-поляритонов, преобразование плазмон-поляритонов после пробега ими по пластине макроскопического расстояния в объемные электромагнитные волны. При этом пучок плазмон-поляритонов отражают примыкающим к поверхности пластины и отклоненным в плоскости ее поверхности от нормали к треку пучка плоским зеркалом. Регулирование верхней границы спектра изменением расстояния пробега плазмон-поляритонов, а регулирование нижней границы спектра осуществляют изменением угла наклона зеркала к поверхности пластины. Технический результат заключается в обеспечении возможности оперативного управления как верхней, так и нижней границами спектра терагерцевого излучения. 3 ил.

Изобретение относится к оптическим методам контроля качества поверхности металлов и полупроводников, а именно к инфракрасной (ИК) амплитудной рефлектометрии. Устройство содержит источник p-поляризованного монохроматического излучения, два элемента преобразования излучения в ПЭВ, приемник излучения, размещенный в окружающей среде в плоскости падения, и измерительный прибор, регистрирующий поступающие от приемника электрические сигналы. Причем оба элемента преобразования выполнены в виде сегментов цилиндров, центральный угол которых не меньше 45°, оси ориентированы перпендикулярно плоскости падения, а выпуклые поверхности способны направлять ПЭВ и имеют длину дуги в поперечном сечении меньше длины распространения ПЭВ. Техническим результатом является уменьшение продолжительности измерений и повышение их точности. 2 ил.

Изобретение относится к области средств коммуникации. Способ раздвоения плазмон-поляритонного канала связи терагерцового диапазона включает создание основного и вторичных каналов на индивидуальных плоскогранных подложках с прямоугольными ребрами, размещение в основном канале неоднородности в виде ребра его подложки, преобразование плазмон-поляритона с помощью этого ребра в объемную волну, при этом волноведущие грани всех каналов располагают в одной плоскости, сопрягаемые грани основного канала и одного вторичного канала, направляющего плазмон-поляритон в исходном направлении, выбирают зеркально скошенными относительно друг друга. Волноведущую грань другого вторичного канала примыкают к волноведущей грани основного канала со стороны ее более длинного ребра, смежного к ребру, пересекающему трек исходного плазмон-поляритона, скошенную грань вторичного канала отделяют от скошенной грани основного канала плоскопараллельной светоделительной пластинкой, ориентированной перпендикулярно плоскости, содержащей волноведущие грани, при этом в канале, отделенном пластинкой от основного, плазмон-поляритон генерируют объемной волной, а в канал, примыкающий к основному, плазмон-поляритон отражают пластинкой. Применение способа позволит уменьшить энергетические потери, сопровождающие передачу сигнала из основного во вторичные плазмонные каналы связи, а также устранить необходимость юстировки каналов при их раздвоении или сопряжении. 2 ил.

Изобретение относится к области информационно-коммуникационных технологий и касается способа увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн (ПЭВ) по плоской металлической поверхности. Способ включает в себя нанесение на поверхность слоя непоглощающего диэлектрика. До нанесения слоя определяют направление максимума диаграммы направленности объемных электромагнитных волн (ОЭВ), излучаемых ПЭВ с их трека. Толщину слоя и показатель преломления его материала выбирают таким образом, чтобы наличие слоя обеспечивало приращение действительной части модуля волнового вектора ПЭВ на величину где ko=2π/λ - волновое число ОЭВ в окружающей поверхность среде; λ - длина волны излучения в окружающей среде; φmах - угол отклонения максимума диаграммы направленности от плоскости поверхности. Технический результат заключается в увеличении длины распространения (ПЭВ) и обеспечении ее защиты от внешних воздействий. 2 ил.

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП). Спектрометр содержит перестраиваемый по частоте источник р-поляризованного монохроматического излучения, плоское и цилиндрическое фокусирующее зеркала, твердотельный плоскогранный проводящий образец, элемент преобразования излучения источника в поверхностные плазмоны (ПП), размещенный в непоглощающей окружающей среде непрозрачный экран, ориентированный перпендикулярно треку ПП, и фотодетектор, сопряженный с устройством обработки информации и установленный на перемещаемой вдоль трека платформе. Обращенный к направляющей ПП грани исследуемого образца край экрана удален от нее на расстояние не меньше глубины проникновения поля ПП в окружающую среду. Спектрометр также содержит регулируемую линию задержки, поворачиваемый поляризатор, укрепленное на платформе плоское зеркало, отражающая грань которого примыкает к направляющей грани исследуемого образца, наклонена к ней под углом 45° и ориентирована перпендикулярно к треку, фокусирующий объектив и установленную перед входным отверстием фотодетектора регулируемую диафрагму, лучеразделитель объемного излучения, расположенный на пути падающего на образец излучения на уровне наклонного зеркала. При этом торцовая грань образца, перпендикулярная плоскости падения излучения и смежная с направляющей гранью, имеет цилиндрическую форму поверхности, ось которой параллельна направляющей грани и лежит в плоскости, содержащей линию сопряжения цилиндрической и плоской граней, причем расстояние от этой линии до оси равно радиусу кривизны цилиндрической поверхности, а длина дуги, содержащей трек ПП на этой поверхности, меньше десяти длин распространения ПП. Изобретение обеспечивает повышение точности измерений за счет повышения соотношения сигнал/шум. 2 ил.

Изобретение относится к области информационно-коммуникационных технологий и касается способа регулирования интенсивности инфракрасной поверхностной электромагнитной волны на плоскогранной структуре. Способ включает в себя преобразование на ребре структуры поверхностной электромагнитной волны в объемную, размещение в дальней волновой зоне излучающего участка ребра структуры другой плоскогранной волноведущей структуры, на ребре которой осуществляют обратное преобразование объемной волны в поверхностную. Регулирование интенсивности поверхностной волны осуществляют за счет изменения величины зазора, разделяющего волноведущие структуры. Технический результат заключается в упрощении и повышении оперативности способа. 2 ил.

Изобретение относится к области передачи информации посредством поверхностных электромагнитных волн и касается геодезической призмы для отклонения пучка монохроматических поверхностных плазмон-поляритонов (ППП). Геодезическая призма выполнена в виде конусной канавки, которая расположена на плоской поверхности образца и имеет сглаженные края. Ось канавки параллельна поверхности образца и перпендикулярна направлению распространения ППП. Размер канавки в направлении пучка меньше длины распространения ППП. При этом ось канавки расположена над поверхностью образца, а края канавки совпадают с прямолинейными частями линии пересечения поверхности образца и поверхности конуса канавки. Технический результат заключается в повышении эффективности и уменьшении габаритов устройства. 3 ил.

Изобретение относится к области средств коммуникации, в которых перенос информации осуществляется поверхностными электромагнитными волнами, точнее поверхностными плазмон-поляритонами (ППП) терагерцового (ТГц) диапазона, направляемыми плоской поверхностью проводящей подложки, и может найти применение в плазмонных сетях связи, а также в устройствах сбора и обработки информации с использованием электромагнитных волн ТГц диапазона. Технический результат состоит в обеспечении возможности оперативного сопряжения основного и вторичного плазмонных каналов связи. Для этого способ включает размещение в нем неоднородности, создают каналы на индивидуальных подложках, грани всех подложек выбирают прямоугольными, в качестве неоднородности используют край подложки, ориентированный перпендикулярно треку исходного поверхностного плазмон-поляритона (ППП), с помощью этого края преобразуют ППП в объемную волну (ОВ), которую разделяют на ряд пространственно разнесенных вторичных ОВ, число которых не меньше числа вторичных каналов, в каждом из которых соответствующей ОВ с помощью края подложки генерируют производный от исходного ППП. 2 ил.

Изобретение относится к бесконтактным пассивным методам обнаружения и локализации металлических объектов в инфракрасном (ИК) излучении, а именно к локализации металлических тел в форме прямоугольного параллелепипеда путем регистрации излучаемого ими теплового ИК-излучения, и может найти применение в системах спецтехники, предназначенных для обнаружения и установления точного местонахождения и расположения металлических предметов в непрозрачной для видимого света среде или упаковке, в системах поточного контроля служб безопасности, в контрольно-измерительной технике, в линиях связи и устройствах обработки информации на основе металлодиэлектрических планарных структур. Предложен способ пассивной локализации ребер прямоугольного металлического параллелепипеда в инфракрасном излучении, включающий измерение в дальней волновой зоне пространственного распределения интенсивности поляризованного излучения от параллелепипеда и определение координат ребер по результатам измерений, при котором параллелепипед термостатируют, а измерения выполняют в плоскостях, параллельных его граням, при этом детектируемое излучение поляризуют таким образом, чтобы оно имело отличную от нуля составляющую электрического поля, перпендикулярную к контролируемому ребру. Технический результат - повышение точности локализации ребер прямоугольного металлического параллелепипеда. 3 ил.

Изобретение относится к области бесконтактного исследования поверхности металлов оптическими методами, а именно к способу измерения длины распространения поверхностных плазмонов, направляемых этой поверхностью. Способ включает измерение интенсивности излучения вдоль трека плазмонов и расчет значения длины распространения по результатам измерений. При этом проводят измерение интенсивности объемного излучения, порожденного плазмонами на естественных неоднородностях поверхности, представляющих собой статистически равномерно распределенные вариации оптических постоянных и шероховатости. Измерения осуществляют за пределами поля плазмонов. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к оптическим методам контроля проводящей поверхности в инфракрасном (ИК) излучении и может быть использовано в физико-химических исследованиях динамики роста переходного слоя поверхности, в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, а также в сенсорных устройствах

Изобретение относится к оптическим методам контроля поверхности металлов и полупроводников в терагерцовом диапазоне спектра и может найти применение в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, в методах по обнаружению неоднородностей (на) проводящей поверхности, в инфракрасной (ИК) рефрактометрии металлов для определения их диэлектрической проницаемости, в ИК сенсорных устройствах и контрольно-измерительной технике

Изобретение относится к оптике дальнего инфракрасного (ИК) и терагерцового (ТГц) диапазонов и может найти применение в установках, содержащих широкополосные источники ТГц-излучения, в ТГц плазменной и фурье-спектроскопии проводящей поверхности и тонких слоев на ней, в перестраиваемых фильтрах ТГц-излучения

Изобретение относится к оптическим методам контроля качества поверхностей металлов и полупроводников

Изобретение относится к оптическим методам исследования поверхности металлов и полупроводников

Изобретение относится к инфракрасной спектроскопии поверхностей металлов и полупроводников
Изобретение относится к области биосенсорики и может быть использовано для изучения белков методом люминесценции

Изобретение относится к бесконтактным исследованиям поверхности металлов и полупроводников оптическими методами, а именно к определению спектров поглощения как самой поверхности, так и ее переходного слоя, путем измерения длины распространения поверхностных электромагнитных волн (ПЭВ), направляемых этой поверхностью, в инфракрасном диапазоне (ИК) спектра и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК-спектроскопии окисных и адсорбированных слоев, в сенсорных устройствах и контрольно-измерительной технике

Изобретение относится к оптическим методам контроля слоев наноразмерной толщины в инфракрасном (ИК) излучении и может быть использовано как в физико-химических исследованиях динамики роста переходного слоя на проводящей поверхности, так и в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек

Изобретение относится к оптическим методам исследования материалов, а именно к определению спектров комплексной диэлектрической проницаемости или оптических постоянных

Изобретение относится к оптическим методам исследования тонких слоев на поверхности металлов и полупроводников, а именно к инфракрасной (ИК) спектроскопии диэлектрической проницаемости
Изобретение относится к биосенсорике и может быть использовано для маркирования различных биообъектов (ферментов, белков, ДНК) и последующей оценки их содержания в смесях оптическими методами

 


Наверх