Патенты автора Корольков Владимир Александрович (RU)

Ультразвуковой 3D-анемометр с каналом контроля функционирования относится к измерительной технике, а именно к устройствам для определения скорости ветра, основанным на использовании акустического метода измерений. Устройство состоит из блока генерации электрических импульсов, блока электроакустических преобразователей, образующих три измерительных акустических канала, блока измерения времени пролета акустических импульсов, блока вычисления компонент скорости ветра и блока индикации, а также дополнительно введенных блока вычисления ультразвуковой температуры воздуха, блока усреднения данных об ультразвуковой температуре воздуха, контактного датчика температуры воздуха, блока сравнения температуры и датчика солнечного сияния, причем блок вычисления ультразвуковой температуры воздуха подключен своим входом (параллельно блоку вычисления компонент скорости ветра) к выходу блока измерения времени пролета акустических импульсов, а выходом - к блоку усреднения, выход которого, в свою очередь, подключен к 1-му (сигнальному) входу блока сравнения температуры, кроме того, контактный датчик температуры, размещенный поблизости от зоны расположения акустических каналов, подключен к 3-му (сигнальному) входу блока сравнения температуры, ко 2-му (управляющему) входу которого подключен датчик солнечного сияния, при этом выход блока сравнения температуры подключен ко 2-му входу блока индикации. Технический результат - оптимизация сроков проведения метрологических поверок ультразвукового анемометра, увеличение межповерочного интервала. 1 ил.

Использование: для определения скорости ветра. Сущность изобретения заключается в том, что ультразвуковой 3D-анемометр состоит из блока генерации управляющих электрических импульсов, электронного вычислительного устройства, блока индикации параметров ветра и механической конструкции, поддерживающей в пространстве электроакустические преобразователи, при этом в его состав дополнительно введены блок селекции управляющих импульсов, блок селекции ошибки измерений и дополнительная пара акустически согласованных электроакустических преобразователей таким образом, что выход блока генерации управляющих электрических импульсов соединен с входом блока селекции управляющих импульсов, выходы которого подключены к входам электроакустических преобразователей, выходы которых, в свою очередь, подключены к входам электронного вычислительного устройства, подключенного к входу блока селекции ошибки измерений, выход которого подключен к блоку индикации параметров ветра, при этом конструкция несущей арматуры электроакустических преобразователей представляет собой центральную стойку с консолями, на которых закреплены 8 электроакустических преобразователей, образующих 4 акустически согласованные пары, причем геометрически электроакустические преобразователи размещены в вершинах воображаемого куба таким образом, что вертикальная ось симметрии куба совпадает с осью центральной стойки, а акустические оси попарно согласованных электроакустических преобразователей проходят по диагоналям боковых граней этого куба и не имеют точек пересечения между собой. Технический результат: устранение ошибки определения вектора скорости ветра, возникающей из-за ветрового затенения измерительного объема элементами несущей арматуры электроакустических преобразователей. 2 ил.

Группа изобретений относится к метеорологии и может быть использована для измерения скорости ветра и температуры воздуха в атмосферном пограничном слое до высоты 2-3 км. Сущность: устройство содержит наземный модуль и размещенный на борту беспилотного летательного аппарата (БПЛА) высотный модуль. В состав наземного модуля включены следующие элементы: генератор (1) тактовых импульсов, измеритель (2) временных интервалов, вычислительный блок (3), дешифратор (4) координат, источник (5) акустических импульсов первой пары акустически согласованных источника и приемника акустических импульсов, излучатель (6) электромагнитных импульсов, приемник (7) электромагнитных импульсов, приемник (8) акустических импульсов второй пары акустически согласованных источника и приемника акустических импульсов, приемник (9) кодовых сигналов. В состав высотного модуля включены следующие элементы: приемник (10) акустических импульсов первой пары акустически согласованных источника и приемника акустических импульсов, приемник (11) электромагнитных импульсов, излучатель (12) электромагнитных импульсов, источник (13) акустических импульсов второй пары акустически согласованных источника и приемника акустических импульсов, передатчик (14) кодовых сигналов, блок (15) определения координат БПЛА. Выбирают точки зондирования X1 и X2 таким образом, чтобы точка X1 находилась на планируемой высоте контроля метеопараметров, а точка X2 - на поверхности земли. Причем прямая, проходящая через точки X1, X2, не должна быть ортогональна плоскости поверхности земли. Из точки X2 синхронно излучают одиночные акустический и электромагнитный импульсы. В точке X1 указанные акустический и электромагнитный импульсы регистрируют. По разности времени прихода импульсов в точку X1 определяют время распространения акустического импульса по трассе X2-X1. Одновременно из точки X1 синхронно излучают одиночные акустический и электромагнитный импульсы. В точке X2 указанные акустический и электромагнитный импульсы регистрируют. По разности времени прихода импульсов в точку X2 определяют время распространения акустического импульса по трассе X1-X2. Рассчитывают средние по трассе X1-X2 скорость ветра и температуру. Технический результат: увеличение дальности измерений, уменьшение зависимости измерений от метеорологических условий, увеличение помехозащищенности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области метеорологии и может быть использовано для калибровки оптического измерителя осадков. Заявленный способ калибровки осуществляют с помощью непрозрачного стержня круглого поперечного сечения, который перемещают через оптический канал под прямым углом к направлению светового потока с сохранением ортогональности оси стержня относительно плоскости оптического канала на всем пути следования стержня, при этом значение поправки для каждого из выделенных участков рассчитываются по формуле: где ki - значение поправочного коэффициента для i-го участка оптического канала, Dc - диаметр стержня, - среднее измеренное значение диметра стержня, полученное при его перемещении в участке i. Технический результат - устранение погрешности определения размеров частиц осадков, вызванной неоднородностью светового потока в оптическом канале. 2 ил.

Изобретение относится к области метеорологического приборостроения и может быть использовано для расширения области применения оптических осадкомеров. В заявленном оптическом способе измерения атмосферных осадков с помощью источника излучения, линейного сенсора и оптической системы формируют измерительную площадь, размеры которой адаптируют в зависимости от текущей интенсивности осадков, затем регистрируют горизонтальные размеры теней частиц осадков по количеству затененных светочувствительных элементов линейного сенсора, осуществляют передачу потока измерительной информации и вычисление искомых параметров атмосферных осадков. Технический результат - возможность регулирования потока данных, генерируемых оптическим осадкомером, для предотвращения превышения пропускной способности канала связи. 1 ил.

Использование: для поверки ультразвуковых анемометров. Сущность изобретения заключается в том, что ультразвуковой анемометр помещают в неподвижную воздушную среду с произвольно установившейся температурой воздуха, включают в режим измерений и сравнивают значения скорости ветра, полученные ультразвуковым анемометром, со значением скорости ветра в неподвижной воздушной среде, которые должны совпадать, при этом об окончательном соответствии метрологических характеристик ультразвукового анемометра паспортным данным судят после того, как преобразовывают акустические импульсы, излучаемые акустическими излучателями ультразвукового анемометра, в электрические, исключая при этом распространение акустического импульса через воздушную среду, и задерживают полученные электрические импульсы на время ti, устанавливаемое испытателем, которое определяют по заданному математическому выражению. Технический результат: обеспечение возможности существенного сокращения временных затрат на проведение операций по поверке ультразвуковых анемометров. 3 н.п. ф-лы, 2 ил.

Изобретение относится к области оптического приборостроения и может быть использовано в газовых раман-спектрометрах

Изобретение относится к области метеорологического приборостроения

Изобретение относится к области оптического приборостроения и предназначено для увеличения интенсивности сигнала комбинационного рассеяния света (КРС) путем более эффективного использования возбуждающего лазерного луча и может использоваться в газовых раман-спектрометрах

Изобретение относится к измерительной технике и может быть использовано для количественного определения энергии падающего ИК-излучения в составе фототермоакустического газоанализатора

Изобретение относится к метеорологическим приборам и может быть использовано для измерения скорости ветра и температуры воздуха ультразвуковым методом

 


Наверх