Патенты автора Бурдин Антон Владимирович (RU)

Изобретение относится к волоконно-оптической технике, в частности к монтажу муфт оптического кабеля, и предназначено для крепления оптических модулей оптического кабеля на кассете муфты при сращивании длин оптического кабеля. Заявлен способ фиксации оптических волокон в модульной трубке оптического кабеля, в котором в месте выхода оптических волокон из модульной трубки оптического кабеля внутрь модульной трубки вводят силиконовый герметик, при этом предварительно на модульную трубку оптического кабеля надевают термоусаживаемую трубку с внутренним диаметром на 0,2–0,3 мм больше внешнего диаметра модульной трубки оптического кабеля и длиной до 10–30 мм, а после того как модульные трубки оптического кабеля обрезают, смывают гидрофобный гель как с внешней поверхности модульной трубки, так и с ее внутренней поверхности на расстоянии 2-5 мм от торца модульной трубки оптического кабеля, выдавливая гидрофобный гель из модульной трубки оптического кабеля, обезжиривают оптические волокна и внешнюю поверхность модульных трубок оптического кабеля на расстоянии 20-30 мм и их внутреннюю поверхность на расстоянии 2-5 мм от торца модульной трубки оптического кабеля. Затем в месте выхода оптических волокон из модульной трубки оптического кабеля внутрь модульной трубки на глубину 2-5 мм вводят силиконовый герметик, наносят равномерно силиконовый герметик на внешнюю поверхность модульной трубки на расстояние 5–10 мм от торца модульной трубки и на оптические волокна на расстоянии до 5 мм от торца модульной трубки, надвигают термоусаживаемую трубку на конец модульной трубки так, чтобы в месте выхода оптических волокон из модульной трубки оптического кабеля она примерно на 5-10 мм заходила на выходящие из модульной трубки оптического кабеля оптические волокна, после чего осаживают термоусаживаемую трубку, равномерно нагревая ее, и через 20-30 минут после этого при полимеризации наружного слоя силиконового герметика приступают к сращиванию оптических волокон. Технический результат - расширение области применения. 5 ил.

Настоящее изобретение относится к волоконно-оптической технике связи. Техническим результатом является компенсация дисперсионных искажений оптического сигнала в многомодовой волоконно-оптической линии передачи, функционирующей в маломодовом режиме. Упомянутый технический результат достигается тем, что в служебном режиме обучения компенсатора 2 используется известная последовательность, состоящая из нечетного числа символов, причем все символы, за исключением центрального, являются "0", и только центральный - "1"; количество символов в обучающей последовательности определяется по искаженному импульсному отклику, предварительно измеренному на выходе оптического волокна линии, либо оценивается через известное значение дифференциальной модовой задержки; осуществляется многократная посылка обучающей последовательности с накоплением и последующим усреднением; далее в результате проведения математической обработки формируется маска, которая записывается в модуль хранения 13; в штатном режиме функционирования после прохождения линии и преобразования в фотоприемном устройстве информационный сигнал поступает в модуль памяти 11, фиксирующий фрагмент этого сигнала с длительностью, аналогичной длительности обучающей последовательности, этот фрагмент информационного сигнала поступает в сумматор 14, где осуществляется вычитание опорного сигнала маски; далее из обработанного фрагмента выделяется последний символ, который поступает на решающее устройство 9; одновременно в модуль памяти 11 вновь дозагружается недостающий фрагмент сигнала с выхода фотоприемного устройства 6 для достижения искомой длительности со сдвигом по временной шкале на один символ, таким образом, что предпоследний символ предыдущего фрагмента информационного сигнала становится последним символом, в сумматоре 14 осуществляется процедура вычитания опорного сигнала маски, последний символ поступает в решающее устройство 9, и далее описанная процедура снова повторяется. 1 ил.

Изобретение относится к области неразрушающего контроля прочности оптических волокон из плавленого кварцевого стекла. Сущность: на контролируемый объект оказывают акустическое воздействие на первой частоте и на второй частоте, измеряют сигнал нелинейной акустической эмиссии на разностной частоте и по результатам обработки данных измерений оценивают степень разрушения контролируемого объекта. В качестве контролируемого объекта и распределенного акустического сенсора используют одно и то же оптическое волокно, на которое оказывают акустическое воздействие и с помощью которого измеряют сигналы на первой, второй и разностной частотах. Регулируют уровни сигналов акустического воздействия так, чтобы обеспечить равенство амплитуд сигналов, измеряемых на первой и второй частотах, после чего измеряют сигналы на первой, второй и разностной частотах, при этом предварительно выполняют измерения на образцовом оптическом волокне, прочность которого известна, а затем, при тех же условиях, на тестируемом оптическом волокне, после чего определяют прочность тестируемого оптического волокна по формуле. Технический результат: расширение области применения. 1 ил.

Использование: для неразрушающего контроля прочности оптического волокна. Сущность изобретения заключается в том, что в оптическом волокне создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которого регистрируют акустической сигнал в зоне акустического воздействия, по результатам обработки данного сигнала выделяют сигнал акустической эмиссии и сигнал акустического воздействия, причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего рассчитывают прочность контролируемого оптического волокна, при этом напряжение в оптическом волокне создают источником акустического воздействия, работающим на одной частоте, при обработке регистрируемого сигнала выделяют из него сигнал нелинейной акустической эмиссии на гармониках частоты источника акустического воздействия и рассчитывают прочность контролируемого оптического волокна по определенной формуле. Технический результат: обеспечение возможности уменьшения погрешности при оценке прочности оптического волокна. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Технический результат: снижение погрешности определения трассы прокладки оптического кабеля, исключение необходимости выполнения измерений при отсутствии акусто-вибрационного воздействия. Сущность: над предполагаемым местоположением оптического кабеля на фиксированном расстоянии друг от друга размещают два работающих в противофазе источника направленного акусто-вибрационного воздействия. Перемещают их продольно-поперечно относительно предполагаемой трассы прокладки кабеля, не изменяя расстояния между ними так, чтобы соединяющая их ось была бы приблизительно перпендикулярна трассе прокладки кабеля. С помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна. Определяют трассу прокладки кабеля по местоположению центра оси между двумя работающими в противофазе источниками направленного акусто-вибрационного воздействия, соответствующему локальному минимуму, расположенному между двумя локальными максимумами. 2 ил.

Изобретение может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов. Техническим результатом является контроль глубины прокладки оптического кабеля и расширение области применения способа. В способе создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристики обратного рассеяния оптического волокна, при этом источник направленного акустического воздействия размещают на поверхности над кабелем и измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e1, затем, сохраняя неизменным положение источника в горизонтальной плоскости, поднимают его над поверхностью на известное расстояние H, после чего измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e2, и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле. 1 ил.

Изобретение относится к области неразрушающего контроля прочности оптических волокон из плавленого кварцевого стекла. В заявленном способе контроля прочности оптического волокна в контролируемом объекте создают напряжение и измеряют акустической сигнал, по результатам обработки которого выделяют сигнал акустической эмиссии и оценивают характеристики контролируемого объекта. При этом объектом контроля является оптическое волокно, в котором создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которой измеряют акустической сигнал в зоне акустического воздействия, по результатам обработки которого выделяют сигнал акустической эмиссии и сигнал акустического воздействия. Причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего определяют прочность контролируемого оптического волокна по формуле (3), где σ0, σT - оценки прочности образцового и контролируемого оптического волокна соответственно. Wa0, WaT - оценки энергии акустической эмиссии, полученные в результате измерений на образцовом и контролируемом оптических волокнах для зоны акустического воздействия соответственно; Ws0, WsT - оценки энергии сигнала акустического воздействия, полученные в результате измерений на образцовом и контролируемом оптических волокнах для зоны акустического воздействия соответственно; n - коэффициент коррозии плавленого кварцевого стекла оптического волокна. Технический результат - расширение области применения. 1 ил.

Изобретение относится к волоконно-оптической технике и может быть использовано для построения бортовых сетей автомобилей, воздушных судов, судов водного транспорта, космических летательных аппаратов и других движимых объектов различного назначения. Согласно способу прокладки бортового волоконно-оптического кабеля длины бортовых волоконно-оптических кабелей терминируют с двух сторон и тестируют в заводских условиях, затем с одной стороны у этих длин отрезают терминированный конец кабеля, прокладывают эти терминированные с одного конца длины бортового волоконно-оптического кабеля на борту движимого объекта, после чего проложенные длины бортового волоконно-оптического кабеля терминируют со второго конца и тестируют, при этом сначала на борту движимого объекта по заданному маршруту прокладывают защитный трубопровод из металла, пластика или иного материала, в котором прокладывают пакет микротрубок, выполненных из металла, пластика или иного материала, после чего в каналы микротрубок способом пневмопрокладки или иным способом прокладывают терминированные с одного конца длины бортового волоконно-оптического кабеля, а затем проложенные длины бортового волоконно-оптического кабеля терминируют со второго конца и тестируют. Изобретение обеспечивает расширение области применения. 2 ил.

Изобретение относится к технике связи. Согласно способу компенсации нелинейных и дисперсионных искажений оптических сигналов в волоконно-оптических линиях связи на приеме принимаемый сигнал пропускают через последовательную цепочку из N нелинейных фазовых фильтров. Каждый из фильтров состоит из звена линейной фазовой фильтрации и звена нелинейной фазовой фильтрации. При этом для линейной фазовой фильтрации применяют аналоговый оптический фазовый фильтр, дисперсионная характеристика которого имеет знак и наклон, противоположные знаку и наклону дисперсионной характеристике рабочего оптического волокна волоконно-оптической линии связи, а для нелинейной фазовой фильтрации оптическое излучение, поступающее с выхода звена линейной фазовой фильтрации, далее на входе звена нелинейной фазовой фильтрации разделяют на три равные части. Одну из частей через первый оптический аттенюатор подают на первый вход первого сумматора оптических сигналов. Вторую часть через второй оптический аттенюатор подают на первый вход второго сумматора оптических сигналов. Третью часть вводят в оптическое волокно с повышенной нелинейностью, на выходе которого сдвигают фазу оптического излучения на π и подают на второй вход второго сумматора оптических сигналов. С помощью второго оптического аттенюатора согласовывают уровни оптического излучения на первом и втором входах второго сумматора оптических сигналов, суммируют во втором сумматоре оптических сигналов оптическое излучение с его первого и второго входов и подают полученное в результате суммирования оптическое излучение на второй вход первого сумматора оптических сигналов. С помощью первого оптического аттенюатора согласовывают уровни оптического излучения на первом и втором входах первого сумматора оптических сигналов, суммируют в первом сумматоре оптических сигналов оптическое излучение с его первого и второго входов и подают полученное в результате суммирования оптическое излучение на выход звена нелинейной фазовой фильтрации. Технический результат заключается в сокращении времени обработки оптических сигналов и в снижении требований к вычислительным ресурсам на приеме волоконно-оптической линии передачи. 1 ил.

Изобретение относится к технике связи и может быть использовано для модового мультиплексирования и увеличения пропускной способности волоконно-оптических линий передачи сетей связи. Технический результат состоит в расширении области применения. Для этого в модовом мультиплексоре на первом этапе фундаментальные моды N одномодовых оптических волокон преобразуют в пространственные вихревые моды, переносящие различный орбитальный угловой момент (OAM), которые на втором этапе преобразуют в N ортогональных собственных мод маломодового оптического волокна, а в модовом демультиплексоре на первом этапе N ортогональных собственных мод маломодового оптического волокна преобразуют в пространственные вихревые моды, переносящие различный орбитальный угловой момент (OAM), которые на втором этапе преобразуют в фундаментальные моды N одномодовых оптических волокон. 1 ил.

Изобретение относится к измерительной технике волоконно-оптических систем связи, а именно может быть использовано для локализации событий на рефлектограммах группы оптических волокон одного элементарного кабельного участка волоконно-оптической линии передачи. В способе локализации событий на рефлектограммах группы оптических волокон одного элементарного кабельного участка волоконно-оптической линии передачи предварительно проводится анализ каждой рефлектограммы из этой группы, снятой в заданном направлении, на предмет выявления и идентификации событий, с последующим составлением таблицы событий. Затем осуществляется сопоставление таблиц рефлектограмм в одном направлении с проверкой выполнения условия соответствия принадлежности пары событий на рефлектограммах разных оптических волокон одного направления к одному событию. Далее в разных направлениях с проверкой выполнения условия контрольной суммы расстояний до одного и того же события в противоположных направлениях относительно оптической длины элементарного кабельного участка при выполнении первого или второго условия хотя бы для пары событий двух разных оптических волокон или в случае второго условия для пары событий одного и того же оптического волокна делается заключение о присутствии этого события на всех остальных рефлектограммах группы, после чего проводятся соответствующие исправления в таблицах событий рефлектограмм оптических волокон с пропущенными событиями. Технический результат - возможность локализации событий на рефлектограммах группы оптических волокон одного элементарного участка волоконно-оптической линии передачи. 7 ил.
Изобретение относится к волоконно-оптической технике связи и может быть использовано для определения потерь оптической мощности в разъемных соединениях оптических волокон. Способ определения потерь оптической мощности в разъемном соединении оптических волокон заключается в следующем. Предварительно создают базу данных эталонных изображений торцевой поверхности феррула волоконно-оптического коннектора заданного типа с инсталлированными оптическими волокнами соответствующего типа из заданной пары однотипных или разнотипных оптических волокон. Каждому эталонному изображению присваивают уникальный идентификатор. Для каждого эталонного изображения с присвоенным уникальным идентификатором определяют действительное значение вносимых потерь оптической мощности для разъемного соединения этой пары оптических волокон. Значение вносимых потерь определяют при условии прохождения теста чистоты всей торцевой поверхности феррула второго коннектора с инсталлированным вторым оптическим волокном из этой пары. Эталонными изображениями, присвоенными им идентификаторами и значениями потерь заполняют базу данных. Затем снимают изображение торцевой поверхности феррула тестируемого волоконно-оптического коннектора с инсталлированными оптическими волокнами. Снятое изображение сопоставляют с эталонными изображениями базы данных торцевых поверхностей феррула волоконно-оптического коннектора с оптическим волокном этого же типа. По совокупности соответствующих критериев и признаков находят наиболее близкое к изображению торцевой поверхности феррула тестируемого волоконно-оптического коннектора эталонное изображение из базы данных. Изображению тестируемой поверхности ставят в соответствие персональный идентификатор найденного эталонного изображения и соответствующее ему искомое значение потерь оптической мощности. Технический результат заключается в обеспечении возможности определения потерь оптической мощности в разъемном соединении как пары однотипных оптических волокон, в том числе с увеличенным относительно одномодовых оптических волокон диаметром сердцевины, так и пар разнотипных оптических волокон.

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим волокном с базовыми станциями, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, при этом базовые станции включают в оптическое волокно последовательно, модулированное оптическое излучение из оптического волокна подают на вход полупроводникового оптического усилителя, модулированное оптическое излучение на выходе полупроводникового оптического усилителя разделяют на две части, первую часть вводят в оптическое волокно, которое подключено к другой базовой станции, вторую часть подают на отражающий элемент, отраженное оптическое излучение подают обратно на выход полупроводникового оптического усилителя, модулируют его в полупроводниковом оптическом усилителе принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, на входе полупроводникового оптического усилителя это модулированное отраженное оптическое излучение разделяют на две части, его первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал, выделяют из него радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть модулированного отраженного оптического излучения подают в оптическое волокно, которое соединено с центральной станцией, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал, из которого выделяют радиосигнал обратного канала. 3 ил.

Изобретение относится к области электротехники и может быть использовано для выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами. Согласно способу выравнивания связи мод в оптических волокнах на строительной длине оптического кабеля модульной конструкции с многомодовыми или маломодовыми оптическими волокнами строительную длину оптического кабеля на барабане помещают в климатическую камеру и подвергают воздействию температурных циклов, в процессе выполнения каждого температурного цикла сначала температуру последовательно понижают до заданных значений отрицательной температуры, а затем последовательно повышают до заданных значений положительной температуры, после чего цикл завершают, при этом каждое заданное значение температуры устанавливают на заданный интервал времени. Изобретение обеспечивает расширение области применения. 1 ил.

Изобретение относится к технике связи и может быть использовано для волоконно-оптической связи. Технический результат состоит в уменьшении дифференциальной модовой задержки многомодовой волоконно-оптической линии в маломодовом режиме передачи. Для этого последовательно многомодовому оптическому волокну линии передачи включают отрезок оптического волокна, разделяют на участки и на каждом участке изгибают оптическое волокно, при этом отрезок оптического волокна включают на дальнем конце волоконно-оптической линии передачи, а количество участков, количество изгибов или витков оптического волокна на каждом участке и радиусы изгибов оптического волокна на каждом участке подбираются из условия минимального значения дифференциальной модовой задержки на выходе волоконно-оптической линии передачи. 1 ил.

Изобретение относится к области волоконно-оптической техники связи и может быть использовано для отбора многомодовых оптических волокон волоконно-оптической линии передачи для работы с одномодовым источником оптического излучения. Многомодовую волоконно-оптическую линию передачи зондируют короткими оптическими импульсами одномодового источника оптического излучения. Торец одномодового источника перемещают по торцу многомодового оптического волокна с заданным шагом вдоль диаметра. Измеряют импульсный отклик оптического волокна многомодовой волоконно-оптической линии передачи и по совокупности результатов измерений импульсных откликов строят диаграмму дифференциальной модовой задержки, которую сравнивают с диаграммой допустимых значений дифференциальной модовой задержки. Если оценки дифференциальной модовой задержки для диаграммы, построенной по результатам измерений импульсных откликов, не превышают соответствующих оценок диаграммы допустимых значений дифференциальной модовой задержки, многомодовое оптическое волокно волоконно-оптической линии передачи отбирают для работы с одномодовым источником оптического излучения. Технический результат - сокращение времени и объема измерений. 1 ил.

Изобретение относится к области волоконно-оптической техники связи и может быть использовано для оценивания пропускной способности многомодовой волоконно-оптической линии передачи с одномодовым источником оптического излучения. Согласно способу многомодовую волоконно-оптическую линию передачи зондируют короткими оптическими импульсами одномодового источника и измеряют импульсный отклик на ее выходе. На входе обеспечивают условия равномерного возбуждения мод. По результатам измерений импульсного отклика на выходе рассчитывают эквивалентный профиль показателя преломления многомодового оптического волокна, по которому рассчитывают набор импульсных откликов на выходе многомодовой волоконно-оптической линии передачи для набора сочетаний условий ввода и вывода оптического излучения. По полученному набору строят диаграмму дифференциальной модовой задержки, и оценивают пропускную способность многомодовой волоконно-оптической линии передачи. Технический результат - сокращение времени и объема измерений и расширение области применения. 1 ил.

Изобретение относится к области волоконно-оптической техники связи и может быть использовано для отбора многомодового оптического волокна для совместной работы с одномодовым оптическим передатчиком многомодовой волоконно-оптической линии передачи. Техническим результатом является сокращение времени инсталляции многомодовых линий передач и расширение области применения. Для этого многомодовую волоконно-оптическую линию передачи зондируют тестовой последовательностью оптических импульсов для отбора многомодового оптического волокна с одномодовым оптическим передатчиком. Для наборов значений параметров типовых источников оптического излучения оптического передатчика, типичных значений параметров рассогласований на вводе и типовых значений параметров профиля показателя преломления многомодовых оптических волокон для заданной длины линии передачи рассчитывают набор типовых импульсных характеристик многомодовой волоконно-оптической линии передачи, по которому определяют набор шаблонов характеристики фильтра для электронной компенсации дисперсии. Затем регулируют характеристику, перебирая набор шаблонов, и отбирают многомодовое оптическое волокно с одномодовым источником оптического излучения для многомодовой волоконно-оптической линии передачи, если хотя бы с одним шаблоном характеристики фильтра для электронной компенсации дисперсии контролируемый параметр качества приема тестовой последовательности лежит в заданных пределах. 1 ил.

Изобретение относится к волоконно-оптической технике связи и может быть использовано для компенсации дифференциальной модовой задержки многомодовой волоконно-оптической линии в режиме передачи маломодовых сигналов

Изобретение относится к волоконно-оптической технике связи

Изобретение относится к волоконно-оптической технике связи и может быть использовано для определения распределения длины биений оптического волокна на участке линии передачи

Изобретение относится к волоконно-оптической технике связи и может быть использовано для идентификации многомодового оптического волокна с повышенными значениями дифференциальной модовой задержки при отборе оптических волокон для линий передачи локальных сетей и сетей доступа, предназначенных для работы со скоростью передачи Гбит/с и более

Изобретение относится к волоконно-оптической технике связи и может быть использовано для определения распределения длины биений оптического волокна на участке линии передачи, что позволяет оценивать такие характеристики линейного тракта, как длина корреляции, поляризационная модовая дисперсия

Изобретение относится к измерительной технике и может быть использовано для контроля герметичности каналов (трубопроводов) междугородной кабельной канализации (МКК) волоконно-оптической линии передачи

Изобретение относится к области контрольно-измерительной техники и направлено на расширение области применения, что обеспечивается за счет того, что измеряют расход и перепад давления газа в канале на концах секции междугородной кабельной канализации волоконно-оптической линии передачи, а по полученным данным оценивают герметичность и определяют расстояние до места негерметичности

Изобретение относится к волоконно-оптической технике связи и может быть использовано для увеличения полосы пропускания многомодовой волоконно-оптической линии передачи

Изобретение относится к волоконно-оптической технике связи и может быть использовано для компенсации дифференциальной модовой задержки и увеличения пропускной способности многомодовой волоконно-оптической линии передачи

Изобретение относится к измерительной технике

Изобретение относится к волоконно-оптической технике связи и может быть использовано для определения распределения длины биений оптического волокна на участке линии передачи, что позволяет оценивать такие характеристики линейного тракта, как длина корреляции, поляризационная модовая дисперсия

Изобретение относится к волоконно-оптической технике и может быть использовано при монтаже строительных длин оптических кабелей в муфтах для вывода проводников от брони к заземлителям

 


Наверх