Патенты автора Гаранин Сергей Григорьевич (RU)

Изобретение относится к технике лазерной космической связи и предназначено для подтверждения технических характеристик терминала космической связи на испытательном стенде. Технический результат состоит в обеспечении возможности в наземных условиях на испытательном стенде моделировать как воздействующие факторы космического пространства, так и все режимы работы терминалов связи. Для этого размещают первый и второй терминалы связи перед первой и второй оптическими системами, совмещают задние фокусы обеих систем: определяют ориентацию оптических осей систем и строительных осей терминалов в заданной системе координат; обеспечивают на входной апертуре терминалов плотность мощности лазерного излучения, соответствующую моделируемому расстоянию между терминалами в условиях космоса; генерируют по одному пучку лазерного излучения первым и вторым терминалом, направляют их в апертуры соответствующих систем, обеспечивают прохождение излучения пучков через отверстие, расположенное в области общего фокуса систем, формируют на отверстии из излучения пучков по одному квазигомоцентрическому пучку излучения каждого терминала; непрерывно регистрируют излучение квазигомоцентрических пучков, прошедших через оптические системы, приемными системами терминалов, обеспечивают прохождение оси пучков терминалов через центр отверстия опорно-поворотным устройством и контуром точного сопровождения терминала, сигналы управления на которые вырабатывают с учетом сигналов с приемной системы терминала при регистрации излучения квазигомоцентрического пучка другого терминала. 2 н. и 21 з.п. ф-лы, 7 ил.

Изобретение относится к области лазерной техники и может быть использовано для проведения эффективной процедуры внутрирезонаторной фазовой коррекции многомодового лазерного излучения. Данный способ внутрирезонаторной фазовой коррекции лазерного излучения основан на изменении формы поверхности гибкого адаптивного зеркала (АЗ), расположенного на месте полностью отражающего зеркала лазерного резонатора, посредством подачи на исполнительные механизмы АЗ управляющих сигналов. Вычисление управляющих сигналов организованно с помощью стохастического параллельного градиентного (СПГ) алгоритма. Технический результат заключается в реализации внутрирезонаторной фазовой коррекции многомодового лазерного излучения, состоящей в сужении диаграммы направленности многомодового излучения и повышении быстродействия работы адаптивной оптической системы за счет применения модернизированного алгоритма стохастического параллельного градиентного спуска - СПГ алгоритма. 3 ил.

Изобретение относится к области лазерной техники и адаптивных оптических систем. В способе управляют волновым фронтом лазерного излучения по стохастическому параллельному градиентному (СПГ) алгоритму, подачу управляющих напряжений на актюаторы адаптивного зеркала производят в итерационном режиме в два этапа, на пробном этапе осуществляют подачу на актюаторы зеркала управляющих напряжений, после измеряют изменение сигнала с фоторегистратора относительно значения до подачи управляющих напряжений на пробном этапе, далее подают управляющие напряжения на корректирующем этапе, значения управляющих напряжений, на актюаторах зеркала на корректирующем этапе, определяют на основе СПГ алгоритма исходя из их пропорциональных значений адаптивному параметру, контролирующему скорость сходимости, изменению сигнала с фоторегистратора на пробном этапе и управляющим напряжениям, подаваемым на актюаторы на пробном этапе, адаптивный параметр, контролирующий скорость сходимости, обратно пропорционален значению сигнала с фоторегистратора на пробном этапе с коэффициентом, обратно пропорциональным квадрату амплитуды напряжений, подаваемых на пробном этапе на актюаторы адаптивного зеркала. Тем самым достигается получение лазерного излучения заданного качества в условиях слабого сигнала. 5 ил.

Изобретение относится к области лазерной техники и может быть использовано для проведения эффективной процедуры внутрирезонаторной коррекции наклонов волнового фронта лазерного излучения. Данный способ внутрирезонаторной коррекции наклонов волнового фронта лазерного излучения основан на изменении ориентации корректора наклонов (КН), расположенного вместо глухого зеркала резонатора, посредством подачи на исполнительные механизмы корректора наклонов управляющих сигналов. Вычисление управляющих сигналов организовано с помощью стохастического параллельного градиентного (СПГ) алгоритма. Технический результат изобретения заключается в повышении быстродействия работы адаптивной оптической системы, предназначенной для внутрирезонаторной коррекции наклонов волнового фронта лазерного излучения, за счет выбора конструктивно простого оптического элемента, обладающего функцией КН, и применения упрощенного СПГ алгоритма, использующегося для вычисления сигналов, управляющих исполнительными механизмами КН в виде плоского зеркала с возможностью поворота по двум взаимно перпендикулярным осям, и, как следствие, в увеличении эффективности максимизации мощности, минимизации расходимости лазерного излучения, распространяющегося через проточную неоднородную активную среду, и в стабилизации направления распространения лазерного пучка. 2 ил.

Изобретение относится области адаптивной оптики и может быть использовано для локации с земли движущихся космических объектов. В способе компенсации атмосферных искажений, вносимых турбулентной атмосферой в оптический сигнал, получаемый от наблюдаемого космического тела (КТ), осуществляют визуализацию и автосопровождение КТ, формируют на заданном упреждении в поле зрения системы визуализации искусственный опорный источник - натриевую оптическую звезду (НЗ) с помощью лазера, направляют регистрируемый оптический сигнал от КТ и НЗ на адаптивную оптическую систему (АОС), и через селективный оптический элемент отводят сигнал НЗ на регистратор. Передача сигнала происходит в два этапа, на первом сигнал проходит АОС без внесения ею дополнительных искажений, а на втором этапе с помощью АОС вносят поправки в волновой фронт регистрируемого сигнала, организуют замкнутый цикл работы АОС по обратной связи с помощью сигнала НЗ на регистраторе, затем о выполнении компенсации судят по достижению плоского волнового фронта. Также на втором этапе компенсацию искажений осуществляют путем апертурного зондирования НЗ с помощью АОС, работающей по алгоритму нахождения максимума целевой функции, которой соответствует число зарегистрированных фотонов, прошедших через диафрагму дифракционного размера, при котором обратная связь осуществляется по регистратору, в качестве которого применяют счетчик фотонов, а в качестве рабочего сигнала принимают число фотонов, причем о достижении плоского волнового фронта судят по максимуму целевой функции. Технический результат заключается в упрощении процесса компенсации. 1 ил.

Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, формирующую оптику выполняют из двух компонентов. Первый из компонентов представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как где θ - полная расходимость излучения на выходе из оптических волокон. Второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения. Технический результат заключается в уменьшении габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера. 3 з.п. ф-лы, 1 ил.

Группа изобретений относится к технике оптической регистрации, а именно к технике лазерного зондирования и фотоэлектрической регистрации обратно отраженного излучения, преимущественно быстропротекающих процессов, и позволяет определять массовые характеристики движущихся объектов. Устройство для реализации способа определения характеристик движущихся объектов содержит по меньшей мере один источник лазерного излучения и последовательно расположенные по ходу распространения лазерного излучения по меньшей мере один коллиматор, контактный экран известной массы и исследуемый объект, причем контактный экран установлен с возможностью перемещения его в сторону коллиматора из-за взаимодействия с налетающим на него исследуемым объектом. И кроме того, содержит один аппаратно-программный комплекс определения скорости движущегося исследуемого объекта по частоте доплеровского сдвига в обратно отраженном излучении, в котором контактный экран выполнен из прозрачного материала, пропускающего через себя часть лазерного излучения в прямом и обратно отраженном от исследуемого объекта направлениях, аппаратно-программный комплекс выполнен на основе оптогетеродинного определения скорости движущегося объекта по частоте доплеровского сдвига в обратно отраженном излучении, удельная масса контактного экрана выбрана в диапазоне 1÷100 раз больше удельной массы исследуемого объекта, а расстояние между коллиматором и контактным экраном выбрано больше или равно длине продольного размера исследуемого объекта. Технический результат - повышение достоверности результатов измерений. 2 н. и 12 з.п. ф-лы, 10 ил.

Способ когерентного сложения включает в себя разделенное на каналы лазерное излучение, направленное на соответствующие каналам фазовые модуляторы. После прохождения фазовых модуляторов все каналы выставляют параллельно друг другу, при этом волновой фронт в каждом канале делают плоским. Часть многоканального излучения отводят и фокусируют на фотоприемник для регистрации сигнала. Подачу управляющих напряжений на фазовые модуляторы производят в два этапа, один пробный и один корректирующий. Причем значения управляющих напряжений, подаваемых на корректирующем этапе, пропорциональны параметру, контролирующему скорость сходимости, изменению сигнала с фотоприемника на пробном этапе и управляющим напряжениям, подаваемым на фазовые модуляторы на пробном этапе. При этом параметр, контролирующий скорость сходимости, обратно пропорционален значению сигнала с фотоприемника на пробном этапе, а коэффициент пропорциональности обратно пропорционален квадрату амплитуды фазовых сдвигов на пробном этапе. Технический результат заключается в получении когерентного оптического сигнала путем сложения нескольких лазерных пучков без измерения абсолютных и относительных фаз в каналах при уменьшении времени когерентного сложения лазерных пучков. 4 ил.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей. Устройство включает в себя фотокатод и сетчатый анод, рабочие поверхности которых выполнены в виде поверхностей тел вращения и которые подключены к источнику напряжения, импульсный или импульсно-периодический источник света, конвертер, преобразовывающий излучение источника света в сферически расходящуюся волну оптического, ультрафиолетового или рентгеновского излучения, центр излучения которого совпадает с фокусом фотокатода. Сетчатый анод расположен эквидистантно фотокатоду, а рабочая поверхность фотокатода представляет собой несимметричную вырезку из параболоида вращения, деформированного путем сдвига его точек от вершины вдоль оси вращения и вдоль радиуса вращения к оси вращения. Дополнительными отличиями является то, что несимметричная вырезка может быть выполнена из параболоида вращения либо круговым или овальным цилиндром, либо прямоугольной призмой. А конвертер может быть выполнен в виде параболического зеркала с металлическим или с диэлектрическим многослойным покрытием либо виде плоской мишени сферической, конической или плоской формы. Технический результат - улучшение направленности и увеличение интенсивности генерируемого электромагнитного излучения, что позволяет расширить область его применения в радиолокации и технике испытаний на импульсные электромагнитные воздействия. 2 з.п. ф-лы, 5 ил.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей. В генераторе электромагнитных импульсов, который включает в себя плоский фотокатод и параллельно ему плоский сетчатый анод, подключенные к источнику напряжения, импульсный или импульсно-периодический источник света и конвертер, преобразовывающий излучение источника света, в сферически расходящуюся волну оптического, ультрафиолетового или рентгеновского излучения, новым является то, что устройство снабжено отражателем в виде несимметричной вырезки из параболоида вращения, при этом между отражателем и его фокусом размещены фотокатод и анод, а между отражателем и анодом установлен конвертер, центр излучения которого размещен на перпендикуляре к плоскости фотокатода, проведенном от фокуса отражателя, при этом расстояния от центра излучения конвертера до плоскости внешней стороны сетчатого анода и от фокуса отражателя до плоскости освещенной поверхности фотокатода одинаковы. Дополнительными отличиями является то, что плоский фотокатод и плоский сетчатый анод могут быть выполнены в форме либо прямоугольника, либо круга, либо овала, либо сектора. Конвертер может быть выполнен в виде параболического зеркала с металлическим или с диэлектрическим многослойным покрытием либо в виде точечной мишени сферической, конической или плоской формы. Отражатель может быть выполнен целиком из металла либо путем напыления металла на несущую конструкцию необходимой формы, изготовленную из стеклопластика, углепластика либо других композиционных материалов. Технический результат - улучшение направленности и увеличение интенсивности генерируемого электромагнитного излучения, что позволит расширить область его применения в радиолокации и технике испытаний на импульсные электромагнитные воздействия. 3 з.п. ф-лы, 3 ил.
Изобретение относится к области лазерной техники и может быть использовано для проведения юстировки элементов лазерных установок, в том числе при наличии оптических аберраций в тракте. Способ автоматизированной юстировки оптической системы основан на визуализации картины маркеров на выходе системы и последующей обработке полученного изображения с целью вычисления управляющих сигналов при отсутствии информации о положении оптической оси системы. Управление оптическими элементами организовано с помощью модернизированного стохастического параллельного градиентного алгоритма. Технический результат изобретения заключается в упрощении и повышении надежности процедуры автоматизированной юстировки оптической системы с помощью маркеров. 3 з.п. ф-лы.

Изобретение относится к оптическому приборостроению и лазерной технике. Мобильный оптический телескоп содержит выполненный с возможностью установки на транспортном средстве кузов-контейнер с агрегатным отсеком, в котором на платформе кузова-контейнера жестко закреплено основание со стойками, зеркальную систему, включающую профилированные зеркала, смонтированную на опорно-поворотном устройстве с взаимно ортогональными осями вращения, приводы вращения и излучатель. Каждый привод вращения выполнен в виде моментного двигателя. Указанный телескоп снабжен последовательно установленными отражающими элементами, образующими лучевод с возможностью прохождения оптического луча от излучателя к зеркальной системе. Решение направлено на повышение эксплуатационных характеристик мобильного оптического телескопа. 7 з.п. ф-лы, 13 ил.

Изобретение может быть использовано для автоматизированной юстировки элементов усилительного канала лазерных установок. Способ включает получение изображений юстировочного лазерного пучка и маркеров контрольных элементов оптической системы, центр которых определяется по паре маркеров, расположенных по обе стороны от центра на одинаковом расстоянии от него. Осуществляют случайный наклон контрольных оптических элементов, контролируют изменение положения изображений маркеров и юстировочного лазерного пучка путем вычисления отклонения центра масс этих изображений от оптической оси системы, вычисляют управляющие сигналы, которые подают на приводы исполнительных механизмов контрольных оптических элементов. Для вычисления управляющих сигналов используют стохастический параллельный градиентный (СПГ) алгоритм, целевая функция в котором зависит от отклонения центров масс изображений от оптической оси системы. Параметр, контролирующий темп сходимости СПГ алгоритма, определяется текущим значением отклонения центра масс изображения от положения оптической оси. Технический результат - упрощение и повышение надежности автоматизированной юстировки оптической системы. 1 з.п. ф-лы, 1 ил.

Для защиты воздушного судна от управляемых ракет с инфракрасными головками самонаведения определяют факт пуска одной или нескольких ракет, генерируют лазерное излучение с плотностью, превышающей плотность мощности теплового излучения двигателя воздушного судна, и посылают в точку нахождения ракеты, благодаря чему ракета получает ложную информацию о местонахождении цели. Повторяют вышеуказанное для каждой последующей ракеты. Повышается эффективность защиты воздушного судна. 2 н.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике. Лазер на парах щелочных металлов с диодной накачкой содержит лазерную камеру с внутренней полостью с прозрачными торцевыми окнами, замкнутый герметичный контур для циркуляции активной среды, проходящий через внутреннюю полость камеры в направлении, поперечном к оптической оси камеры, источник излучения накачки на основе лазерных диодов и оптические средства формирования и фокусировки излучения накачки во внутреннюю полость камеры. Активная среда представляет собой смесь из буферного газа и пара щелочного металла. Источник излучения накачки расположен со стороны торцевого окна лазерной камеры таким образом, что направление формируемого им излучения накачки ориентировано продольно направлению оптической оси камеры. Оптические средства формирования и фокусировки излучения накачки выполнены и установлены с обеспечением построения в активной среде в одной и той же плоскости, поперечной оптической оси камеры, изображения излучающей зоны источника излучения накачки в направлении ее короткой стороны и Фурье-изображения излучающей зоны источника излучения накачки в направлении ее длинной стороны. Технический результат заключается в обеспечении более эффективного преобразования энергии накачки в лазерную энергию и в повышении КПД лазера. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего лазерного излучения, полупрозрачное зеркало вывода излучения и второе зеркало резонатора. За зеркалом вывода установлены полностью отражающее зеркало, усилитель рабочего излучения, спектроделительное зеркало, первое и второе опорно-поворотные устройства (ОПУ). Отражающие поверхности зеркал ОПУ установлены встречно друг другу. За задней гранью спектроделительного зеркала расположены средства видеонаблюдения и контроля за положением удаленного объекта, а также оптико-электронное устройство для регистрации отраженного зондирующего излучения. На оптической оси, не совпадающей с первой, расположен локационный модуль, включающий последовательно установленные на оптической оси источник зондирующего лазерного излучения, средства формирования пространственного профиля и расходимости зондирующего излучения, полностью отражающую зеркальную систему транспортировки зондирующего излучения, третье и четвертое ОПУ, средства видеонаблюдения и контроля за положением удаленного объекта. Отражающие поверхности зеркал ОПУ установлены встречно друг другу. Также устройство содержит автоматизированную систему управления и контроля режимов работы, связанную с системой топогеодезической и временной привязки. Технический результат заключается в расширении объема контролируемого космического пространства. 13 з.п. ф-лы, 4 ил.

Изобретение относится к подрывной технике, а именно к инициирующим устройствам. Система инициирования содержит детонатор, детонационный распределитель с приемными точками и каналами разводки, заряд взрывчатого вещества, элементы крепления. Между распределителем и элементами крепления имеется преграда с пазами и толщиной 1-10 мм. Между преградой и зарядом имеется газовый зазор величиной 0,1-10 мм. Изобретение позволяет производить равномерно распределенный подрыв по всей длине заряда. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области электронной техники, а именно к способам изготовления фотокатодов и устройствам для изготовления фотокатодов для использования их в различных областях промышленности, техники, а также для научных исследований. Технический результат - упрощение способа изготовления фотокатода, обеспечение высокой повторяемостью результатов, повышение квантовой эффективности. При изготовлении фотокатодов осуществляют наращивание тонкого покрытия на поверхности подложки как гомогенного, так и комбинированного посредством импульсного лазерного напыления тонких пленок, обеспечивают взаимодействие лазерного луча с мишенью, поглощение электромагнитной энергии, отвод тепла мишенью, расплавление материала мишени, испарение, многофотонную ионизацию, образование плазмы, свечение плазмы, обратное тормозное излучение, расширение плазменного облака, включающего материал мишени, которое осуществляют при начальной температуре плазмы в облаке в диапазоне 5000-15000 К. Описаны также вариант способа изготовления фотокатода и варианты устройств для их осуществления. 4 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для контроля качества световодов с непрозрачной защитной оболочкой и одним недоступным торцом ввода-вывода излучения

Изобретение относится к области импульсной радиотехники

Изобретение относится к системам обеспечения безопасности полетов гражданских воздушных судов

 


Наверх