Патенты автора Федоров Владимир Владимирович (RU)

Изобретение относится к области теплотехники и может быть использовано в роторных теплообменниках. В теплообменнике, включающем ротор, помещенный в корпус, ротор выполнен из кольцевых элементов, образующих каналы, разделяющие приточный и удаляемый воздух. Корпус состоит из внешнего и внутреннего цилиндра. Внешний цилиндр охватывает ротор и содержит ввод удаляемого воздуха и вывод приточного воздуха. Внутренний цилиндр вставлен в ротор и содержит отверстия для ввода приточного воздуха и вывода удаляемого воздуха. Внутренний цилиндр содержит перегородку, разделяющую ввод и вывод приточного воздуха. Изобретение также относится к способу применения теплообменника. Сначала вводят удаляемый воздух в ротор через отверстие для ввода удаляемого воздуха и вводят приточный воздух в ротор через отверстие для ввода приточного воздуха. Пропускают удаляемый и приточный воздух через ротор по каналам для удаляемого и приточного воздуха соответственно. Далее выводят удаляемый и приточный воздух из ротора через отверстия для вывода удаляемого и приточного воздуха соответственно. Ввод приточного воздуха и вывод удаляемого воздуха при этом расположены с одной стороны относительно оси вращения ротора, а вывод приточного и ввод удаляемого воздуха - с другой. Технический результат - повышение КПД теплообменника, обеспечение саморазморозки теплообменника. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к сепарационному элементу, предназначенному для отделения капель жидкости от газа, и может быть использовано в энергетике, горно-обогатительной, нефтеперерабатывающей, нефтехимической и химической промышленности. Сепарационный элемент содержит вертикально-ориентированный корпус в виде обечайки и размещенный внутри него завихритель потока. Завихритель потока выполнен из радиальных наклонных лопаток, размещенных вокруг центральной оси. Каждая лопатка завихрителя содержит отклоняющие элементы. В результате обеспечивается упрощение конструкции сепарационного элемента при сохранении его эффективности в улавливании капельной влаги, повышение надежности за счет уменьшения склонности к зарастанию отложениями и упрощение очистки. 14 з.п. ф-лы, 6 ил.

Изобретение относится к мокрой очистке загрязненных газов от механических примесей, пыли, аэрозолей, паров и газовых примесей и может быть использовано в химической, горнодобывающей, металлургической и других отраслях промышленности. Достигается снижение внутреннего гидравлического сопротивления с одновременным уменьшением габаритов. Технический результат достигается за счет того, что устройство для мокрой очистки газов содержит корпус, включающий восходящий канал, входной и выходной патрубки, поддон со сливным патрубком для отвода отработанной орошающей жидкости, короб, установленный над корпусом, диспергирующую решетку, установленную внутри восходящего канала над упомянутым поддоном, каплеуловитель, установленный внутри восходящего канала; при этом корпус выполнен с возможностью подвода орошающей жидкости над диспергирующей решеткой, а также дополнительно содержит газораспределительный канал с установленной в нем разделительной перегородкой, перенаправляющей входной и выходной потоки; при этом указанный газораспределительный канал и восходящий канал разделены между собой внутренней стенкой корпуса. 7 з.п. ф-лы, 2 ил.
Изобретение может быть использовано при пайке двухслойных конструкций, в частности для изготовления корпусов камер сгорания ЖРД, состоящих из наружной силовой оболочки, выполненной из стали или сплава на никелевой основе, и внутренней оребренной оболочки, выполненной из меди или сплава на основе меди. Нагрев конструкции до температуры пайки осуществляют в две стадии: сначала до температуры 750°С±10°С в течение 30 мин с выдержкой при этой температуре 10 мин, а затем в течение 55 мин доводят температуру до 1000°С±10°С и выдерживают в течение 20 мин. Охлаждение конструкции проводят также в два этапа: сначала принудительное охлаждение до 400°С, а затем на воздухе. За счет выполнения двухрежимного нагрева конструкции при непрерывной работе вакуумной системы существенно сокращается общее время нагрева конструкции, что позволяет свести к минимуму проникновение атомов Mn в поверхностный слой медной оболочки и сократить время пайки. 1 з.п. ф-лы.

Изобретение относится к химической, металлургической, энергетической и другим сферам промышленности и связано с тепломассообменом и химическим обменом, и взаимодействием между двумя текучими средами, такими как газ и жидкость, например, для удаления пыли и химических загрязнителей газа. Оно может использоваться как скруббер, абсорбер, десорбер, теплообменник или химический реактор. Устройство для смешивания текучих сред включает восходящий канал для первой текучей среды, насадки, формирующие двухмерную решетку поперек этого канала так, чтобы первая текучая среда проходила сквозь эту решетку, и средство для внесения второй текучей среды в канал над решеткой. Множество насадок имеют такую форму и расположены внутри этой решетки таким образом, чтобы первая текучая среда, проходя сквозь эту решетку, формировала в канале над этой решеткой по меньшей мере по одной струе первой текучей среды для каждой из множества насадок. Каждая струя сформирована одной из множества насадок, разнонаправлена по крайней мере с одной струей, сформированной соседней насадкой. Множество струй сформированы насадками так, чтобы в канале над решеткой они формировали нелинейное течение первой текучей среды и взаимодействовали в канале над решеткой со второй текучей средой, внесенной в этот канал. В устройстве осуществляется способ смешивания текучих сред. Насадка для формирования множественных струй текучей среды состоит из корпуса с впускным и выпускным отверстиями, имеющего боковые стенки и центральную ось, и лопастей, закрепленных внутри этого корпуса. У каждой лопасти есть по меньшей мере четыре кромки. У каждой лопасти две смежные кромки присоединены к боковой стенке, две другие смежные кромки свободны. Если провести линии вдоль свободных кромок, то эти линии будут окружать центральную ось корпуса. Технический результат: высокая эффективность тепломассообмена, высокая надежность. 3 н. и 9 з.п. ф-лы, 19 ил.

Изобретение относится к радиоэлектронной технике и касается создания ферритовых материалов с большими величинами ширины линии спиновых волн, предназначенных для использования в СВЧ-диапазоне, в том числе при изготовлении ферритов для приборов высокого уровня мощности сантиметрового диапазона длин волн. Получение ферритового материала с большой величиной ширины линии спиновых волн с намагниченностью насыщения 1800 Гс, шириной кривой ферромагнитного резонанса 40 Э, действительной составляющей диэлектрической проницаемости 15,0, тангенсом угла диэлектрических потерь не более 2-10-4, температурой Кюри не менее 200°C и шириной линии спиновых волн на частоте 9,5 ГГц не менее 10 эрстед, является техническим результатом изобретения. Ферритовый материал содержит, вес. %: оксид иттрия (Y2О3) - 45,0-45,5, оксид самария (Sm2O3) - 1,2-1,3, оксид железа (Fe2О3) - остальное. Предлагаемый состав позволяет создать ферритовый материал с вышеуказанными параметрами для производства и разработки СВЧ-приборов высокого уровня мощности. 2 табл., 6 пр.

Изобретение относится к радиоэлектронной технике и касается создания ферритовых материалов с большими величинами ширины линии спиновых волн, предназначенных для использования в СВЧ диапазоне, в том числе при изготовлении ферритов для приборов высокого уровня мощности сантиметрового диапазона длин волн. Ферритовый материал с большой шириной линии спиновых волн содержит в качестве базового состава оксиды железа, гадолиния и иттрия, и дополнительно оксид самария, при следующем соотношении компонентов, вес.%: оксид иттрия (Y2O3) - 27,2÷27,5, оксид гадолиния (Gd2O3) - 22,4÷22,6, оксид самария (Sm2O3) - 1,1÷1,2, оксид железа (Fe2O3) - остальное. Увеличение ширины линии спиновых волн с намагниченностью насыщения материала 1200 Гс, шириной кривой ферромагнитного резонанса - 140 Э, действительной составляющей диэлектрической проницаемости - 15,0, тангенсом угла диэлектрических потерь не более 2·10-4, температурой Кюри не менее 270°, на частоте 9,5 ГГц не менее 20 эрстед, является техническим результатом изобретения. 1 табл., 9 пр.

Изобретение относится к технике прямого контакта газа и жидкости. Вихревая камера для контакта газа и жидкости со средствами ввода жидкости, вход в которую по газу распределен по ее боковой поверхности и образован устройством закрутки газа, а выход по газу расположен внутри этого устройства, согласно изобретению включает раскручивающее устройство, прилегающие к устройству закрутки газа или встроенное в него и образующее выход по жидкости из вихревой камеры. Простейший вариант такого раскручивающего устройства представляет одно- или многозаходная улитка, образованная одной или несколькими спиральными (раскрывающимися по направлению потока) обечайками с перекрывающими друг друга по радиусу концами. Области их перекрытия и образуют тангенциальные щели для вывода жидкости из камеры. Внутренний радиус раскручивающего устройства близок к максимальному радиусу внутренней поверхности устройства закрутки газа, а выход по жидкости образован одной или несколькими тангенциальными щелями, соединяющими вихревую камеру с областью ввода газа в нее. Технический результат - повышение эффективности и надежности, а также уменьшение размеров устройств контакта газа и жидкости с вихревыми контактными камерами. 1 з.п. ф-лы, 2 ил.

Изобретение относится к способу подготовки под пайку поверхности детали из высокопрочной стали, содержащей в качестве легирующих элементов ванадий, молибден и вольфрам, и может быть использовано в различных отраслях машиностроения, в частности в авиационной и космической технике

Изобретение относится к области энергетического машиностроения, в частности к изготовлению блока критического сечения сопла камеры жидкостного реактивного двигателя

Изобретение относится к теплотехнике и конструкциям общего назначения для теплообменных и теплопередающих устройств, а более конкретно к плоским теплообменникам

Изобретение относится к ракетной технике, к способу изготовления сопла камеры сгорания жидкостного ракетного двигателя

Изобретение относится к области ракетостроения, а более конкретно к реактивным соплам с регулируемой высотностью

 


Наверх