Патенты автора Голубенко Валентин Александрович (RU)

Изобретение относится к области вторичной цифровой обработки радиолокационных (РЛ) сигналов и может быть использовано для распознавания типового состава групповой воздушной цели (ГВЦ) из класса «самолеты с турбореактивными двигателями (ТРД)». Технический результат заключается в обеспечении постоянства вероятности распознавания типового состава ГВЦ не ниже заданной за счет оптимизации решающего правила, позволяющего адаптировать процесс распознавания к различному характеру полета ГВЦ. Заявленный способ заключается в том, что РЛ сигнал, отраженный от ГВЦ из класса «самолеты с ТРД», на промежуточной частоте подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планеров самолетов группы и вращающихся лопаток первых ступеней рабочих колес компрессоров низкого давления их силовых установок. Далее вычисляют отсчет доплеровской частоты центроида Fц как среднее значение отсчетов доплеровских частот локальных максимумов, соответствующих отражениям РЛ сигналов от планеров самолетов группы, определяют отсчеты доплеровский частот Fкij первых компрессорных составляющих спектра сигнала, где i=1, …,I; I - количество самолетов в группе; j=1, …,J; J - количество типов самолетов с ТРД в группе. Вычисляют разносы ΔFij отсчетов доплеровских частот между центроидом Fц ГВЦ и каждым отсчетом Fкij в соответствии с динамической моделью разносов ΔFij доплеровских частот, по которым в течение K тактов осуществляется предварительное обучение нейронной сети для различных типов целей с различным характером их полета, имеющих соответствующий разнос доплеровских частот ΔFij (k+1). В процессе распознавания типового состава ГВЦ по РЛ сигналу, отраженному от ее элементов, с помощью каждого ij-го калмановского фильтра, функционирующего с соответствующей динамической моделью при различном характере полета самолетов группы, осуществляют фильтрацию отсчетов разносов доплеровских частот, в результате чего на выходе каждого ij-го калмановского фильтра формируют оценки разносов доплеровских частот, которые поступают на входы нейронной сети для принятия за K тактов работы калмановских фильтров предварительного решения о наличии в группе i-го самолета j-го типа с соответствующей вероятностью Pij, которая сравнивается с пороговым значением Рпор, при выполнении условия для каждого значения вероятности Pij≥Рпор принимается окончательное решение о том, что в группе находится i-й самолет j-го типа, в противном случае принимается решение об отсутствии данного типа самолета в группе. 1 ил., 1 табл.

Изобретение относится к радиоэлектронным системам управления (РЭСУ) летательными аппаратами и может быть использовано для самонаведения ракеты класса «воздух-воздух» на заданный тип самолета с турбореактивным двигателем (ТРД) из состава разнотипной их пары. Способ заключается в измерении и получении в угломере радиолокационной головки самонаведения (РГС) ракеты угловой скорости вращения линии визирования «ракета-не разрешаемая по угловым координатам пара самолетов» в горизонтальной и вертикальной плоскостях, измерении с помощью акселерометра собственного ускорения ракеты в горизонтальной Jг и вертикальной Jв плоскостях, формировании в автоселекторе скорости РГС ракеты путем узкополосной доплеровской фильтрации двух планерных отсчетов Fп1 и Fп2 доплеровских частот, обусловленных соответственно скоростями сближения ракеты с первым и вторым самолетами разнотипной пары, и двух компрессорных отсчетов Fк1 и Fк2 доплеровских частот, обусловленных скоростями сближения ракеты с первыми ступенями компрессоров низкого давления соответственно первого и второго самолетами разнотипной пары, вычислении возможных комбинаций разностей между планерными и компрессорными отсчетами доплеровских частот. Технический результат: формирование параметров рассогласования в РЭСУ ракетой класса «воздух-воздух», позволяющих осуществить самонаведение ракеты на заданный типа самолета с ТРД из состава разнотипной их пары. 1 ил.

Изобретение относится к области вторичной обработки радиолокационных (РЛ) сигналов и может быть использовано для распознавания в импульсно-доплеровской радиолокационной станции (РЛС) типа самолета с турбореактивным двигателем (ТРД) при воздействии имитирующих (уводящих по дальности и скорости) помех. Достигаемый технический результат - распознание в импульсно-доплеровской РЛС с вероятностью не ниже заданной типа самолета с турбореактивным двигателем при воздействии уводящих по дальности и скорости помех. В способе сигнал, отраженный от самолета с турбореактивным двигателем, подвергают узкополосной доплеровской фильтрации, преобразуют в амплитудно-частотный спектр. Далее в первом калмановском фильтре определяют оценку доплеровской частоты обусловленной отражениями сигнала от планера самолета, во втором калмановском фильтре определяют оценку доплеровской частоты обусловленной отражением сигнала от наступающих лопаток, а в четвертом калмановском фильтре от отступающих лопаток рабочего колеса первой ступени компрессора низкого давления силовой установки самолета. Сравнивают модуль производной оценки разности между оцененными значениями доплеровских частот с пороговым значением ε, близким к нулю, и принимают решение о наличии либо отсутствии воздействия уводящей по скорости помехи. В третьем калмановском фильтре сравнивают модуль разности между оценкой производной дальности до самолета и оценкой скорости сближения носителя РЛС с сопровождаемым ею самолетом с порогом ε1, модуль разности между оценкой дальности и вычисленной дальностью Д*(k) - с порогом ε2. В зависимости от результатов сравнения с пороговыми значениями принимают решение о наличии или отсутствии воздействия уводящих по скорости и дальности помех с/без функционально-связанным законом увода. Весь диапазон возможных значений оценок разностей разбивают на Q неперекрывающихся поддиапазонов в зависимости от значения величины оборотов вращения ротора силовой установки, вычисляют вероятность Pq попадания величины в каждый из сформированных q-х поддиапазонов. Максимальное значение вероятности сравнивается с пороговым значением, и при Pqmax≥Рпор принимается решение о распознавании q-го типа самолета с турбореактивным двигателем с вероятностью Pqmax не ниже заданной. 4 ил.

Изобретение относится к области радиолокации. Достигаемый технический результат - повышение достоверности распознавания типа самолета с турбореактивным двигателем в импульсно-доплеровской радиолокационной станции при его полете на различных высотах. Способ заключается в том, что радиолокационный сигнал, отраженный от самолета с ТРД, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр (АЧС) отражений сигнала от планера самолета с ТРД и вращающихся лопаток рабочего колеса компрессора низкого давления (КНД) его силовой установки. Путем пороговой обработки АЧС сигнала формируют только те отсчеты доплеровских частот Fi с соответствующими амплитудами спектральных составляющих, которые превысили установленный порог. Одновременно за время Т каждого обзора пространства измеряют два значения дальности Д1 и Д2 до самолета с ТРД и вычисляют частотную позицию доплеровской частоты Fп, зависящую от скорости сближения носителя импульсно-доплеровской РЛС с планером самолета с ТРД. Определяют в АЧС сигнала позицию доплеровской частоты с максимальной по амплитуде спектральной составляющей, превысившей установленный порог, которая соответствует значению доплеровской частоты Fк, обусловленной скоростью сближения носителя импульсно-доплеровской РЛС с вращающимися лопатками первой ступени КНД силовой установки самолета с ТРД, и вычисляют разность доплеровских частот ΔFпк=(Fп-Fк). Дополнительно за время Т каждого обзора пространства измеряют значения бортовых пеленгов ϕг азимута и ϕв угла места, среднюю дальность, вычисляют высоту полета самолета с ТРД. Для каждой высоты Н полета самолета с ТРД диапазон разностей ΔFпк разбивают на Q неперекрывающихся поддиапазонов. При попадании разности доплеровских частот ΔFпк в q-й поддиапазон принимают решение о q-м типе самолета с ТРД, летящем на высоте Н. 4 ил.

Изобретение относится к области вторичной цифровой обработки радиолокационных сигналов. Достигаемый технический результат - обеспечение бессрывного сопровождения вертолета в импульсно-доплеровской радиолокационной станции. Способ заключается в параллельном сопровождении на основе узкополосной доплеровской фильтрации и процедуры быстрого преобразования Фурье отсчетов доплеровских частот, обусловленных отражениями сигнала от фюзеляжа вертолета и вращающихся лопастей несущего винта вертолета. Затем определяют отсчет Fф доплеровской частоты спектральной составляющей с максимальной амплитудой Аф, превысившей первый порог U1 и соответствующий отражениям сигнала от фюзеляжа вертолета. Полученные последовательные в дискретном времени отсчеты доплеровских частот фильтруют в первом фильтре сопровождения. Определяют отсчеты Fi, где i=1, …, I; I - общее количество амплитуд спектральных составляющих, превысивших второй порог U2, соответствующих отражениям сигнала от лопастей несущего винта вертолета, за исключением спектральной составляющей с максимальной амплитудой Аф и соответствующей отражениям сигнала от фюзеляжа вертолета. Величина второго порога U2 в n раз меньше величины первого порога U1. Вычисляют отсчеты Fэ доплеровской частоты, соответствующий энергетическому центру отражений сигнала от лопастей несущего винта вертолета, и фильтруют их во втором фильтре. При наличии отсчетов доплеровских частот спектральных составляющих, превысивших первый порог U1 и соответствующих отражениям сигнала от фюзеляжа вертолета, формируют оценки параметров движения вертолета при его сопровождении по отражениям сигнала от его фюзеляжа. При наличии отсчетов доплеровских частот спектральных составляющих, превысивших второй порог U2 и не превысивших первый порог U1, формируют оценки параметров движения вертолета при его сопровождении по отражениям сигнала от лопастей несущего винта. 2 ил.

Изобретение относится к области радиолокации и может быть использовано для обеспечения энергетической скрытности работы на излучение импульсно-доплеровских бортовых радиолокационных станций (БРЛС) истребителей при их групповых действиях и обнаружении группы самолетов противника, оснащенных станциями радиотехнической разведки (РТР). Достигаемый технический результат - обеспечение энергетической скрытности работы на излучение импульсно-доплеровских БРЛС всех истребителей группы с заданной вероятностью при обнаружении самолетов противника, оснащенных станциями РТР. Способ функционирования системы импульсно-доплеровских БРЛС при групповых действиях истребителей заключается в том, что в каждой i-й импульсно-доплеровской БРЛС i-го истребителя группы формируется высокочастотная последовательность зондирующих импульсов, осуществляется их усиление по мощности, излучение в направлении группы из М самолетов противника, каждый из которых оснащен станцией РТР, прием, усиление, преобразование отраженных от группы самолетов противника сигналов на промежуточные частоты, их селекция по дальности и доплеровской частоте, преобразование сигналов в цифровую форму с последующим их спектральным анализом. При этом все импульсно-доплеровские БРЛС N истребителей группы объединены в единую радиолокационную систему с каналами взаимного обмена информацией, и один из истребителей выбран в качестве истребителя-лидера. В БРЛС истребителя-лидера формируются требуемые значения управляемых параметров функционирования каждой i-й БРЛС каждого i-го истребителя группы: средней излучаемой мощности передатчика i-й БРЛС, времени облучения группы самолетов противника, оснащенных станциями РТР, времени когерентного накопления сигнала в приемнике i-й БРЛС, которые передаются в каждую БРЛС каждого истребителя. Далее формируется параметр рассогласования при управлении в каждой БРЛС каждого истребителя между требуемыми и текущими значениями управляемых параметров, управление которыми осуществляется до тех пор, пока параметр рассогласования в каждой БРЛС каждого истребителя группы не будет равен нулю. 2 ил.

Изобретение относится к области вторичной цифровой обработки радиолокационных сигналов и может быть использовано для сопровождения и распознавания типа воздушной цели (ВЦ)-самолета с турбореактивным двигателем (ТРД) при воздействии сигналоподобной с модуляцией доплеровской частоты помехи типа DRFM (цифровая радиочастотная память). Достигаемый технический результат - распознавание с вероятностью не ниже заданной типа сопровождаемой ВЦ-самолета с ТРД при воздействии сигналоподобной с модуляцией доплеровской частоты помехи типа DRFM. Способ заключается в том, что отраженный от ВЦ-самолета с ТРД радиолокационный сигнал с помощью процедуры быстрого преобразования Фурье преобразуется в амплитудно-частотный спектр, составляющие которого обусловлены отражениями сигнала от планера сопровождаемой ВЦ и вращающихся частей компрессора низкого давления (КНД) ее силовой установки, а также воздействием сигналоподобной с модуляцией доплеровской частоты помехи типа DRFM. В области планерных составляющих доплеровских частот, во-первых, определяется первый отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, который поступает на вход первого калмановского фильтра, во-вторых, определяется второй отсчет доплеровской частоты, соответствующий амплитуде, соизмеримой со спектральной составляющей спектра сигнала, имеющей максимальную амплитуду в области планерных доплеровских частот, который поступает на вход второго калмановского фильтра, в-третьих, определяется отсчет доплеровской частоты, соответствующий максимальной амплитуде спектральной составляющей спектра сигнала, находящейся слева на единицы кГц по доплеровской частоте относительно первого и второго отсчетов доплеровских частот, который поступает на вход калмановского фильтра сопровождения первой компрессорной составляющей спектра сигнала, обусловленной отражениями сигнала от лопаток рабочего колеса первой ступени КНД. На каждом такте работы трех калмановских фильтров определяются соответственно оценки разности между оцененными первыми значениями доплеровских частот и лопаток рабочего колеса первой ступени КНД воздушной цели-самолета с ТРД и между оцененными вторыми значениями доплеровских частот и лопаток рабочего колеса первой ступени КНД. Определяются производные модулей оценок разностей, которые сравниваются с пороговым значением ε, близким к нулю. Весь диапазон возможных значений оценок разностей априорно разбивается на Q неперекрывающихся друг с другом поддиапазонов. За К промежуточных тактов работы всех трех калмановских фильтров определяется вероятность Pq попадания сформированной величины в каждый из априорно сформированный q-й поддиапазон. Определяется номер q-го поддиапазона, для которого величина вероятности Pq максимальна. Это максимальное значение величины Pq max сравнивается с заданным пороговым значением вероятности распознавания типа цели Рпор. Если Pq max≥Рпор, принимается решение о распознавании q-го типа сопровождаемой ВЦ-самолета с ТРРД с вероятностью Pq max, не ниже заданной, в противном случае принимается решение о невозможности распознать тип сопровождаемой ВЦ с заданной вероятностью. 2 ил.

Изобретение относится к области радиолокации и может быть использовано для распознавания в импульсно-доплеровской радиолокационной станции (РЛС) типа самолета с турбореактивным двигателем (ТРД). Достигаемый технический результат - повышение достоверности распознавания типа самолета с ТРД. Способ распознавания типа самолета с ТРД в импульсно-доплеровской РЛС заключается в том, что радиолокационный сигнал, отраженный от самолета с ТРД, с выхода приемника РЛС на промежуточной частоте подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр (АЧС), спектральные составляющие которого обусловлены отражениями сигнала от планера самолета с ТРД и вращающихся лопаток рабочего колеса компрессора низкого давления (КНД) его силовой установки, путем пороговой обработки АЧС сигнала формируют только те отсчеты доплеровских частот, которые превысили установленный порог, за время Т каждого обзора пространства измеряют два значения дальности Д1 и Д2 до самолета с ТРД, по которым предварительно вычисляют частотную позицию доплеровской частоты , обусловленной скоростью сближения носителя РЛС с планером самолета с ТРД, в АЧС сигнала определяют ближайшее к предварительно вычисленной частотной позиции доплеровской частоты значение доплеровской частоты с соответствующей амплитудой спектральной составляющей, превысившей установленный порог, которое окончательно определяет доплеровскую частоту сигнала Fп в его АЧС, обусловленную скоростью сближения носителя РЛС с планером самолета с ТРД, определяют в АЧС сигнала позицию доплеровской частоты (j=1, …, (i-1), (i+1), …, N), на которой находится спектральная составляющая, превысившая установленный порог и имеющая максимальную амплитуду Aj (j=1, …, (i-1), (i+1), …, N), которая соответствует значению доплеровской частоты Fк, обусловленной скоростью сближения носителя РЛС с вращающимися лопатками первой ступени КНД силовой установки самолета с ТРД, вычисляют разность доплеровских частот ΔFпк=(Fп-Fк), априорно разбивают диапазон разностей ΔFпк на Q неперекрывающихся q поддиапазонов соответствующих q-му типу цели, при попадании разности доплеровских частот ΔFпк в q-й поддиапазон принимают решение о q-м типе самолета с ТРД. 4 ил.

Изобретение относится к радиоэлектронным системам управления (РЭСУ) летательными аппаратами и может быть использовано для самонаведения ракеты класса «воздух-воздух» на самолет из состава их пары по его функциональному назначению по принципу «ведущий-ведомый». Технический результат – расширение функциональных возможностей на основе формирования параметров рассогласования в РЭСУ ракетой класса «воздух-воздух», позволяющих осуществить самонаведение ракеты на самолет из состава их пары по его функциональному назначению по принципу «ведущий-ведомый». Для этого способ заключается в измерении и получении в угломере радиолокационной головки самонаведения (РГС) ракеты угловой скорости вращения линии визирования «ракета-не разрешаемая по угловым координатам пара самолетов» в горизонтальной и вертикальной плоскостях, измерении с помощью акселерометра собственного ускорения ракеты в горизонтальной Jг и вертикальной Jв плоскостях, осуществлении в автоселекторе скорости РГС ракеты узкополосной доплеровской фильтрации на основе алгоритма быстрого преобразования Фурье, формировании оценок и траекторий доплеровских частот, обусловленных скоростями сближения ракеты с ведущим и ведомым самолетами пары, вычислении автокорреляционных функций и их параметров - времени корреляции τ1 и τ2, собственной частоты f01 и f02 автокорреляционной функции, среднеквадратического отклонения σ1 и σ2 флюктуаций доплеровской частоты, анализе параметров автокорреляционных функций, при выполнении условий принимается решение о том, что оценка обусловлена скоростью сближения ракеты с ведущим самолетом пары, а оценка обусловлена скоростью сближения ракеты с ведомым самолетом пары, в этом случае при предстартовом целеуказании (ЦУ) о наведении ракеты на ведущего самолета параметры рассогласования в РЭСУ в горизонтальной Δгвщ и вертикальной Δввщ плоскостях будут формироваться в соответствии с выражениями где λ - рабочая длина волны РГС ракеты; N - навигационная постоянная, при предстартовом ЦУ о наведении ракеты на ведомый самолет параметры рассогласования формируются в соответствии с выражениями при выполнении условий принимается решение о том, что оценка обусловлена скоростью сближения ракеты с ведомым самолетом пары, а оценка обусловлена скоростью сближения ракеты с ведущим самолетом пары и при предстартовом ЦУ о наведении ракеты на ведущий самолет параметры рассогласования формируются в соответствии с выражениями а при предстартовом ЦУо наведении ракеты на ведомый самолет из состава пары параметры рассогласования формируются в соответствии с выражениями 1 ил.

Изобретение относится к области радиолокации и может быть использовано в импульсно-доплеровской бортовой радиолокационной станции (БРЛС) для обеспечения энергетической скрытности ее работы на излучение при обнаружении воздушной цели-носителя станции радиотехнической разведки (РТР). Достигаемый технический результат - формирование управления излучением зондирующего сигнала и приемом отраженного от воздушной цели-носителя станции РТР сигнала в импульсно-доплеровской БРЛС истребителя, позволяющее обеспечить энергетическую скрытность работы БРЛС истребителя на излучение с заданной вероятностью при обнаружении воздушной цели-носителя станции РТР. Сущность способа функционирования импульсно-доплеровской бортовой радиолокационной станции истребителя при обеспечении энергетической скрытности ее работы на излучение заключается в формировании высокочастотной последовательности зондирующих импульсов, их усилении по мощности, излучении в направлении воздушной цели - носителя станции радиотехнической разведки, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующим их спектральным анализом, при этом формируются сигналы управления, пропорциональные параметрам рассогласования Δi ( - количество управляющих сигналов) в БРЛС при управлении средней мощностью излучения Рбрлс передатчика и временами когерентного накопления сигнала Ткн в приемнике и облучения Тобл воздушной цели - носителя станции РТР, в соответствии с определенным выражением. 1 ил.

Изобретение относится к области радиолокации и может быть использовано для расширения функциональных возможностей импульсно-доплеровской бортовой радиолокационной станции (БРЛС). Достигаемый технический результат - расширение функциональных возможностей БРЛС за счет распознавания воздействия по боковым лепесткам диаграммы направленности антенны (ДНА) из вынесенной точки пространства прицельной по частоте помехи типа DRFM при обнаружении воздушной цели (ВЦ), прикрываемой самолетом-постановщиком помех, и, в случае ее воздействия, обработки полезного сигнала в БРЛС с одновременной режекцией помехи типа DRFM. Способ заключается в сканировании пространства главным лучом ДНА с компенсационным каналом по боковым лепесткам при обнаружении ВЦ с помощью импульсно-доплеровской БРЛС, установке коэффициента усиления в основном канале меньшим и соизмеримым с коэффициентом усиления сигнала в компенсационном канале, преобразовании сигналов в основном и компенсационном каналах в соответствующие амплитудно-частотные спектры, при этом при облучении ВЦ главным лучом ДНА импульсно-доплеровской БРЛС амплитуды A1 и А2 спектральных составляющих сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f1, обусловленной доплеровским смещением несущей частоты БРЛС вследствие взаимного перемещения ее носителя и облучаемой ВЦ, при облучении самолета-постановщика помехи типа DRFM - цифровая радиочастотная память, оснащенного станцией радиотехнической разведки (РТР), главным лучом ДНА импульсно-доплеровской БРЛС амплитуды А3 и А4 спектральных составляющих сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f2, обусловленной доплеровским смещением несущей частоты БРЛС вследствие взаимного перемещения ее носителя и облучаемого самолета-постановщика помехи типа DRFM, при облучении ВЦ главным лучом ДНА и постановке самолетом-постановщиком помехи прицельной на ранее разведанной с помощью станции РТР частотной позиции f2 помехи типа DRFM по боковым лепесткам ДНА амплитуды A1 и А2 спектральных составляющих сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f1, амплитуды Ап1 и Ап2 спектральных составляющих помехового сигнала соответственно в основном и компенсационном каналах расположены на частотной позиции f2, осуществляется анализ расположения спектральных составляющих сигнала и их амплитуд, в зависимости от его результата осуществляется обработка только полезного сигнала БРЛС или обработка полезного сигнала в БРЛС с одновременной режекцией помехи типа DRFM на частотной позиции f2. 3 ил.

Изобретение относится к области радиолокации и может быть использовано для повышения помехозащищенности импульсно-доплеровской бортовой радиолокационной станции (БРЛС) при ее работе на излучение и обнаружении воздушной цели (ВЦ) - носителя станций радиотехнической разведки (РТР) и активных помех (АП). Достигаемый технический результат - обеспечение помехозащищенности импульсно-доплеровской БРЛС при работе ее на излучение и обнаружении ВЦ - носителя станций РТР и АП. Способ заключается в формировании высокочастотной последовательности зондирующих импульсов на первоначальной несущей частоте f1, их усилении по мощности, излучении в направлении ВЦ - носителя станций РТР и АП, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующим их спектральным анализом, при каждом приеме сигнала, отраженного от ВЦ - носителя станций РТР и АП, измеренное значение дальности обнаружения DБРЛС сравнивают с максимальным значением дальности обнаружения DPTP станцией РТР излученного БРЛС сигнала на несущей частоте f1, при выполнении условия DБРЛС>DPTP принимают решение о том, что скрытность БРЛС при ее работе на излучение обеспечена и станция РТР не обнаруживает и не распознает структуру и параметры излученного БРЛС сигнала на несущей частоте f1, в этом случае обеспечивается помехозащищенность БРЛС, поскольку постановка помех со стороны станции активных помех (САП) осуществляться не будет, в противном случае - одновременно с увеличением в n раз, где n - целое или дробное число, большее единицы, времени когерентного накопления сигнала в приемнике БРЛС, уменьшением в n раз средней излучаемой мощности передатчика БРЛС, осуществляют переход на другую несущую частоту fi, где i=2, I, где I - общее количество несущих частот зондирующего сигнала, до тех пор, пока не будет выполнено условие DБРЛС>DPTP, что свидетельствует об обеспечении помехозащищенности импульсно-доплеровской БРЛС. 1 ил.

Изобретение относится к радиолокации и может быть использовано для сопровождения пилотируемой воздушной цели (ВЦ) и отделившихся от нее управляемых ракет (УР) класса «воздух-воздух»

Изобретение относится к области радиоуправления и может быть использовано в радиоэлектронных системах самонаведения управляемых ракет класса «воздух - воздух» при их наведении на элементы групповой воздушной цели, летящие в плотной группе

Изобретение относится к области обработки радиолокационных сигналов и может быть использовано для сопровождения разрешаемых по доплеровской частоте элементов групповой воздушной цели (ГВЦ) и распознавания количества целей в группе, а также варианта динамики их полета

 


Наверх