Патенты автора Медков Михаил Азарьевич (RU)

Изобретение относится к химической промышленности, а именно к способам получения двойного фосфата NaYP2O7. Технический результат достигают за счет использования в способе в качестве прекурсоров олеата иттрия, олеата натрия, трибутилфосфата с мольным соотношением Na:Y:Р=1-1,2:1:2,1-2,3, которые растворяют в спиртовом растворе канифоли, удаляют спирт и подвергают термической обработке при 400-600°С. 1 ил.
Изобретение относится к технологии получения материалов состава Na1+хZr2SiхР3-хO12, где 0<х<3, обладающих суперионной проводимостью, которые могут использоваться в качестве твёрдых электролитов в натрий-ионных батареях, химической очистке, химическом зондировании и обработке радиоактивных отходов. Способ получения фосфатосиликатов циркония и натрия состава Na1+xZr2SixP3–xO12 со структурой NASICON включает последовательное растворение в этиловом спирте ацетилацетоната циркония(IV), олеата натрия, трибутилфосфата, тетраэтоксисилана и канифоли, отгонку растворителя при температуре 80°С, термообработку при 500ºС в течение 30 мин и пиролиз при 1000ºС в течение 30 мин. Технический результат состоит в уменьшении времени синтеза, получении широкого спектра фосфатосиликатов циркония и натрия со структурой NASICON с чистым фазовым составом продукта. 1 табл., 6 пр.
Изобретение относится к пирогидрометаллургии вольфрама, в частности, к технологии извлечения вольфрама из шеелитовых CaWO4 и вольфрамитовых FeWO4 и MnWO4 концентратов в виде соединений, являющихся товарной продукцией, в частности, оксида вольфрама WO3. Вольфрамовый концентрат обрабатывают в интервале температур 350-420°С в течение 3,0-3,5 часов при массовом соотношении концентрат : бифторид аммония : сульфат аммония, равном 1:1,5-2,0:3,5-4,0, с последующим охлаждением полученного продукта и его выщелачиванием путем растворения в воде при Т:Ж, равном 1:25, после чего промывают нерастворимый осадок подкисленным водным раствором. Способ позволяет упростить и сократить количество стадий переработки при одновременном получении товарного продукта высокого качества. 1 з.п. ф-лы, 3 пр.

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным введением непосредственно в опухоль радиомодификатора. В качестве радиомодификатора используют синтезированные микрочастицы фосфатного стекла, легированного 40% оксида тантала. Радиомодификатор вводят в виде 1 % масс. взвеси в физиологическом растворе, при этом размер указанных микрочастиц в взвеси составляет до 100 мкм. Способ обеспечивает улучшение локального контроля над опухолевым ростом, уменьшение объема удаляемых с опухолью тканей, снижение лучевой нагрузки на окружающие зону операции ткани за счет применения в качестве радиомодификатора микрочастиц фосфатного стекла, легированного 40% оксида тантала. 1 табл.

Изобретение относится к технологии получения фосфатосиликата циркония и натрия состава Na3Zr2Si2PO12 со структурой NASICON, обладающего суперионной проводимостью, который может применяться в качестве твердого электролита в датчиках ионов, газовых сенсорах, в натриевых ионных аккумуляторах. Сущность изобретения заключается в использовании олеата цирконила и олеата натрия, которые сначала растворяют в органическом растворителе при 60-70°С, добавляют трибутилфосфат и тетраэтоксисилан в мольном соотношении Na:Zr:Si:P=3,4-3,6:2,2-2,4:2:1,35-1,4, перемешивают, отгоняют растворитель при температуре 110°С, затем подвергают термической обработке при 600°С в течение 30 мин, измельчают и проводят пиролиз при 1000°С в течение 30 мин. Изобретение позволяет получать Na3Zr2Si2PO12 с размером зерна 0,1-0,3 мкм и незначительной примесью тетрагонального ZrO2 упрощенным способом за счет укорочения стадий синтеза. 1 ил., 4 пр.
Изобретение может быть использовано в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Способ получения биоактивной керамики на основе диоксида циркония включает термическую обработку смеси, содержащей цирконий и компоненты стекла. В качестве смеси используют раствор в органических растворителях, содержащий олеат натрия, тетраэтоксисилан, олеат кальция, трибутилфосфат и олеат цирконила. Из исходной смеси отгоняют растворители, затем прекурсор подвергают пиролизу при 1300°С в течение 30 мин. Полученный продукт охлаждают до комнатной температуры, измельчают, прессуют, прокаливают в муфельной печи до 1300°С и охлаждают в два этапа: сначала в отдельной камере отжига при 550°С с выдержкой в течение часа, а затем при остывании до комнатной температуры в выключенной камере отжига. Изобретение позволяет повысить плотность и прочность биоактивной керамики на основе диоксида циркония. 1 з.п. ф-лы, 4 пр.

Изобретение относится к технологии получения малозольного графита, который может быть использован в качестве конструкционного материала в атомной энергетике, теплотехнике, для изготовления тиглей для плавки металлов, для получения многокомпонентного стекла, трубчатых нагревателей, а также является исходным сырьем для получения коллоидного графита, оксида графита и расширенного графита. Способ очистки зольного графита включает его фторирование путем смешивания с водным раствором бифторида аммония. Затем проводят термическую обработку реакционной смеси при 150-160°С в течение 2,5-3,0 ч при массовом соотношении графита и бифторида аммония, равном 1:0,40-0,45. Профторированный продукт, охлажденный до комнатной температуры, промывают водой, смешивают с раствором бисульфата аммония и подвергают эту смесь термообработке при 250-260°С в течение 2-3 ч. После охлаждения продукта до комнатной температуры его распульповывают в воде, фильтруют, промывают водой непосредственно на фильтре и высушивают при 60-70°С. Изобретение позволяет повысить эффективность способа за счет упрощения технологической схемы, уменьшения продолжительности осуществления, снижения энергозатрат и расхода бифторида аммония. 1 з.п. ф-лы, 2 пр.
Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Предложен способ получения биостекла, легированого диоксидом циркония с использованием органических производных кремния, фосфора и циркония. В качестве исходных веществ используют олеаты натрия, кальция и циркония, трибутилфосфат и тетраэтилортосиликат, смесь которых сначала выдерживают при температуре 150-200°С для отгонки растворителей, а затем подвергают пиролизу при 1300°С в течение 0,5 часа для получения конечного продукта.Технический результат - упрощение способа получения биостекла, легированого оксидом циркония, за счет сокращения времени процесса и снижения энергозатрат в результате понижения температуры пиролиза. 1 з.п. ф-лы, 3 пр.
Изобретение относится к способу получения боратных люминофоров с помощью термообработки, причем в качестве прекурсора используют смесь олеата лантана, олеата европия, экстракта висмута с борной кислотой с введением октанола и триоктиламина, которую нагревают сначала в течение 1 часа при 200°C и затем при температуре 550-750°C в течение 2 часов. 4 пр.
Изобретение относится к получению люминесцентных материалов, используемых в светотехнике, а также в нелинейной оптике в широком спектральном диапазоне. Для получения боратных люминофоров проводят термообработку органических солей редкоземельных элементов. В качестве прекурсора используют смесь олеата лантана и олеата тербия или европия, в которую добавляют раствор борной кислоты в смеси октанола и триоктиламина. Полученную смесь нагревают сначала в течение 1 ч при 200°C, затем при температуре 550-900°C в течение 2 ч. Изобретение позволяет упростить получение боратов лантана, легированных европием или тербием, за счет снижения числа стадий и времени синтеза. 8 пр.
Изобретение относится к способу очистки зольного графита. Способ включает термическую обработку графитового концентрата в смеси с бифторидом аммония сначала при температуре 190-200°С в течение 2 ч, затем при температуре 360-400°С до полного прекращения процесса возгонки кремнефторида аммония с последующим выщелачиванием и промывкой полученного продукта, при этом термическую обработку выполняют в присутствии сульфата аммония, а выщелачивание и промывку осуществляют водой при комнатной температуре. Технический результат: упрощение процесса очистки зольного графита за счет сокращения количества стадий. 2 з.п. ф-лы, 2 пр.

Изобретение относится к способам переработки борсодержащего сырья, конкретно к способу переработки датолитового концентрата. Способ включает фторирование датолитового концентрата твердым фторирующим агентом при нагревании до 410-420°C с последующей сепарацией полученных продуктов фторирования путем возгонки. Способ характеризуется тем, что в качестве фторирующего агента используют фторирующий комплекс, содержащий 70-75 мас.% сульфата аммония и 25-30 мас.% флюорита либо флюоритового концентрата. Фторирование проводят путем нагревания датолитового концентрата CaBSiO4(OH) с фторирующим комплексом в токе воздуха со скоростью повышения температуры 2,0-2,5 град/мин до 330-340°C с выдержкой при этой температуре в течение 60-70 мин. После этого повышают температуру до 410-420°C с выдержкой при достигнутой температуре в течение 4,0-4,5 ч. Полученную смесь возгонов тетрафторбората аммония NH4BF4 и гексафторсиликата аммония (NH4)2SiF6 для перевода последнего в возгон нагревают до 250-270°С, при этом полученный возгон направляют в сублиматор, а тетрафторборат аммония NH4BF4 извлекают в виде твердого остатка. Предлагаемый способ позволяет расширить круг средств переработки датолитового концентрата путем обеспечения эффективного твердофазного фторирования с использованием фторирующего комплекса, содержащего доступные и недорогие компоненты, а также повысить экологическую безопасность за счет безотходности способа. 1 з.п. ф-лы, 2 пр.
Изобретение относится к химической промышленности и может быть использовано при изготовлении трубчатых нагревателей, конструкционных материалов для атомной энергетики и теплотехники, тиглей для плавки металлов и многокомпонентного стекла, а также при получении коллоидного графита, окиси графита и расширенного графита. Согласно первому варианту зольный графит смешивают с водным раствором бифторида аммония. Полученную смесь однократно термообрабатывают при 60-70°С в течение 4-6 ч. Продукт охлаждают до комнатной температуры и обрабатывают 2 %-ным раствором бифторида аммония, затем отфильтровывают с одновременным промыванием непосредственно на фильтре новой порцией 2 %-ного раствора бифторида аммония. Отфильтрованный и промытый продукт смешивают с раствором сульфата аммония. Смесь прокаливают при 350-370°С в течение 4,0-4,5 ч. После охлаждения до комнатной температуры прокалённый продукт распульповывают в воде, отфильтровывают с одновременным промыванием водой и направляют на сушку. Согласно второму варианту зольный графит сначала смешивают с водным раствором сульфата аммония. Полученную смесь прокаливают, повышая температуру со скоростью 2,0-2,5 град/мин до 350-370°С с выдержкой при достигнутой температуре в течение 4,0-4,5 ч. Полученный продукт охлаждают до комнатной температуры и распульповывают в воде при Т:Ж=1:10, отстаивают 15-20 мин и отфильтровывают осадок с одновременным промыванием водой при Т:Ж=1:10. Промытый и отфильтрованный осадок смешивают с растворенным в воде бифторидом аммония. Полученную густую тестообразную массу термообрабатывают при 60-70°С в течение 4-6 ч. Продукт охлаждают и обрабатывают 2 %-ным раствором бифторида аммония. Осадок отфильтровывают, промывают непосредственно на фильтре 2 %-ным раствором бифторида аммония и направляют на сушку. Технический результат - упрощение способа очистки зольного графита и его аппаратурного оформления. 2 н. и 5 з.п. ф-лы, 4 пр.

Изобретение относится к способу переработки борсодержащего сырья, в частности датолитового концентрата, и может быть использовано для получения борной кислоты и борного ангидрида. Способ включает смешивание датолитового концентрата с сульфатом аммония (NH4)2SO4 при массовом отношении сульфата аммония к концентрату 2,0-2,1:1, нагревание реакционной смеси со скоростью 1-2°С/мин от комнатной температуры до 310-330°C с выдержкой при достигнутой температуре в течение 5,0-5,5 часов, распульповывание полученной после остывания твердой массы в воде при Т:Ж = 0,5-1:1, упаривание пульпы до гелеобразного состояния, нагревание до 500-510°С, выдерживание при достигнутой температуре в течение 2,0-2,5 часов, выщелачивание остывшего продукта водой при Т:Ж = 1:5-7 и температуре 90-95°C с получением раствора борной кислоты, упаривание раствора до начала кристаллизации и осаждения борной кислоты, отделение и очистку выпавшего осадка. Изобретение обеспечивает упрощение способа переработки борсодержащего сырья и его аппаратурного оформления, а также повышение его экономической эффективности и экологической безопасности. 2 з.п. ф-лы, 1 табл., 2 пр.

Изобретение может быть использовано при переработке природного титансодержащего сырья с получением диоксида титана анатазной модификации. Способ переработки ильменитового концентрата включает его вскрытие с помощью сульфатизирующего реагента с последующим отделением соединений титана от соединений железа. Вскрытие проводят в твердой фазе путем обжига концентрата с избытком сульфата аммония в качестве сульфатизирующего реагента при 360-400°С в течение 4,0-4,5 ч. Образовавшийся продукт выщелачивают водой при соотношении Т:Ж=1:5,0-5,5 с получением раствора, содержащего сульфаты железа и титана. Отделяют нерастворившийся остаток. Проводят термический гидролиз полученного раствора при 80-90°С в течение 1,5-2,0 ч. Получают диоксид титана в виде мелкокристаллического осадка модификации анатаз, который отстаивают в течение 2-3 ч, отделяют от раствора фильтрованием и сушат. После извлечения диоксида титана раствор используют для получения железного купороса. Изобретение позволяет увеличить эффективность переработки ильменитового концентрата при одновременном повышении экологической безопасности и снижении вредного воздействия на организм человека за счет уменьшения количества стадий, проведения вскрытия в твердой фазе, исключения использования серной кислоты. 3 з.п. ф-лы, 3 пр.

Изобретение относится к переработке природного титансодержащего сырья с получением диоксида титана рутильной модификации, который находит применение в лакокрасочной и целлюлозно-бумажной отраслях промышленности, в производстве пластмасс и резинотехнических изделий, а также в качестве универсального отбеливателя в пищевой, косметической и фармацевтической промышленности. Способ переработки ильменитового концентрата включает его сульфатизацию, перевод соединений железа в раствор, прокаливание при температуре в интервале от 870 до 900°С. Сульфатизацию ильменитового концентрата с крупностью частиц до 40 мкм проводят сульфатом аммония, который смешивают с концентратом в массовом отношении ильменитовый концентрат : сульфат аммония, равном 1:(3-4). Полученный продукт со скоростью 2,5 град/мин нагревают до температуры прокаливания и выдерживают при достигнутой температуре в течение 5,0-5,5 часов. После этого осуществляют обработку прокаленного продукта раствором серной кислоты с концентрацией 20-25 г/л при Т:Ж=1:(5-10) с переводом железа в растворимую форму. Получают осадок диоксида титана, который отфильтровывают и промывают водой. Изобретение позволяет повысить эффективность переработки ильменитового концентрата за счет упрощения процесса, снижения количества стадий и уменьшения затрат. 1 з.п. ф-лы, 2 пр.

Изобретение относится к медицине, а именно к композиции рентгеноконтрастного биостекла и способу ее получения, и может быть использовано в ортопедии и челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия или в стоматологии в качестве добавки в пломбировочный материал, и позволит визуально контролировать позиционирование имплантата или пломбы как на стадии размещения, так и с течением времени. Технический результат изобретения заключается в упрощении способа получения биостекла, содержащего рентгеноконтрастную добавку - оксид вольфрама, обладающий меньшей растворимостью, и менее токсичный. Рентгеноконтрастное биоактивное стекло содержит следующие компоненты, мас.%: SiO2 40,5-44,5, Na2О 22,0-24,3, CaO 22,0-24,3, Р2О5 5,5-5,9, WO3 1,0-10,0. Его получают смешением олеата кальция, олеата натрия, трибутилфосфата и тетраэтоксисилана в скипидаре, добавлением экстракта вольфрама, полученного экстракцией три-н-октиламина из солянокислого раствора вольфрама, нагреванием для удаления растворителя при 150-200°С, и проведением пиролиза при температуре 1250-1300°С в течение 30 мин. 3 пр.

Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида аммония при температуре 420-450°С в течение 1,0-1,5 часа с получением гипса и фторида аммония в качестве продуктов. Способ позволяет упростить процесс при одновременном повышении его безопасности. 2 пр.

Изобретение относится к медицине, а именно к способу получения борсодержащего биоактивного стекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия. Способ включает в себя смешение олеата кальция, олеата натрия, трибутилфосфата и тетраэтоксисилана в скипидаре, добавление раствора борной кислоты в смеси триоктиламина и октилового спирта, нагревание для удаления растворителей при 150-200°С и проведение пиролиза при температуре 700°С в течение 30 минут. Технический результат заключается в упрощении способа получения биостекла за счет сокращения времени процесса, а также снижении пожароопасности. 1 з.п. ф-лы, 2 пр.

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита Fe3O4 из раствора, содержащего соли железа (II) и железа (III), концентрированным раствором аммиака при значении рН реакционной смеси не менее 10 в присутствии стабилизатора - лимонной кислоты, взятой из расчета 0,02-0,5 моль на 1 моль образующегося по стехиометрии коллоидного Fe3O4, который обрабатывают в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов, после чего выделяют декантацией на внешнем магните и промывают. Добавляют к полученному осадку водный раствор аммиака, затем в полученную суспензию вводят лимонную кислоту и раствор тантала во фтористоводородной кислоте при рН реакционной смеси 9-11. Обрабатывают полученную смесь в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов с получением осадка ферримагнитных частиц Fe3O4 размером 70-400 нм, покрытых рентгеноконтрастной оболочкой оксида тантала Ta2O5. Отфильтровывают и промывают полученный осадок. Технический результат - повышение устойчивости получаемого магнитоактивного рентгеноконтрастного средства к седиментации, улучшение стабильности его водной суспензии за счет оптимизации размеров его частиц при одновременном увеличении прочности и повышении адгезии их рентгеноконтрастной оболочки к ферримагнитному ядру. 1 табл., 4 пр.
Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных ламп, светоизлучающих диодов, плазменных дисплейных панелей, электронно-лучевых трубок и медицинских приборов для лечения онкозаболеваний методом фотодинамической терапии. Сначала к олеату европия добавляют трибутилфосфат (ТБФ) в мольном соотношении Eu:ТБФ, равном 1:(6-7). Полученную смесь обжигают в закрытой муфельной печи при 700-750 °С в течение 3 часов. Полученный люминофор имеет состав EuPO4:Eu2+ и максимальную интенсивность свечения в синей области спектра. Способ прост и не требует восстановительной атмосферы и высоких температур обжига. 6 пр.

Изобретение относится к медицине, а именно получению ренгеноконтрастных цементов для закрытия небольших полостей в костных тканях. Рентгеноконтрастный инжектируемый кальций-фосфатный цемент для костной пластики содержит в качестве рентгеноконтрастного вещества оксид тантала Ta2O5, дополнительно содержит монокальцийфосфат моногидрат (МКФМ), а в качестве затворяющей жидкости - смесь коллоидной силикатной суспензии (КСС) с полиэтиленгликолем (ПЭГ) при следующем соотношении компонентов, масс. %: сухая смесь: ТКФ - 55,1-62,9%; МКФМ - 29,9-34,1%; Ta2O5 - 3-15%; затворяющая жидкость: КСС- 90%, 95%; ПЭГ – 5%, 10%. Технический результат изобретения заключается в упрощении состава рентгеноконтрастного инжектируемого кальций-фосфатного цемента за счет обеспечения оптимальных показателей текучести и рентгеноконтрастности без введения специальных улучшающих добавок при одновременном повышении безопасности применения. 1 табл.
Изобретение относится к фармацевтической промышленности, а именно к способу получения магнитоактивного рентгеноконтрастного средства в виде водной дисперсии наночастиц, содержащих оксид железа Fe3O4 и оксид тантала Та2О5, путем последовательного осаждения из соответствующих растворов, содержащих соединения железа либо соединения тантала, с помощью раствора аммиака в присутствии стабилизатора, при этом оксид тантала осаждают из содержащего тантал водного фторидного либо водного сульфатооксалатного раствора, при этом раствор аммиака используют в количестве, обеспечивающем рН смеси не менее 10, полученный осадок отфильтровывают и промывают водой, после чего распульповывают его в воде, к полученной водной дисперсии добавляют при перемешивании водный раствор, содержащий соль железа (II) и соль железа (III), концентрированный раствор аммиака до значения рН смеси не менее 10 и раствор олеата натрия в качестве стабилизатора; в полученную смесь, содержащую оксид тантала Та2О5 и оксид железа Fe3O4, вводят содержащий тантал водный фторидный либо водный сульфооксалатный раствор, добавляют раствор аммиака до значения рН не менее 10 и раствор олеата натрия, после декантации образовавшегося осадка декантант сливают, оставшуюся пульпу отфильтровывают, промывают водой, полученный осадок распульповывают в воде и диспергируют ультразвуком. Изобретение обеспечивает повышение эффективности магнитоактивного рентгеноконтрастного средства. 3 пр.

Изобретение относится к катализаторам для очистки газовых смесей от токсичных примесей, в частности от оксидов азота и углерода, и может быть использовано для удаления их из газовых технологических выбросов и выхлопных газов двигателей внутреннего сгорания. Способ получения катализатора состава {LaxBa(1-x)}{FeyNb(1-y)}(1-z)PdzO3, где x=0,30-0,95, y=0,07-0,94, z=0,01-0,10, включает приготовление смеси компонентов, содержащих в заданном соотношении лантан, барий, железо, ниобий и палладий, с последующей термической обработкой, при этом процесс осуществляют в одну стадию пиролизом органического раствора, содержащего лантан, барий, железо, ниобий и палладий, при 600°С в течение 1 часа. Органический раствор, содержащий указанные элементы, получают смешением в заданном соотношении экстрактов лантана, железа, ниобия и палладия с раствором олеата бария в бензоле. Лантан экстрагируют из нитратного раствора, содержащего 1 г/л лантана, бензольным раствором, содержащим 0,3% фенантролина и 20% ацетилацетона; железо экстрагируют из хлоридного раствора, содержащего 6,5 г/л железа, 10%-ным раствором триоктиламина в бензоле; ниобий экстрагируют из сульфатооксалатного раствора, содержащего 1 г/л ниобия, 5%-ным раствором хлорида триалкилбензиламмония; палладий экстрагируют из хлоридного раствора, содержащего 2,5 г/л палладия, 10%-ным раствором триоктиламина в бензоле. Полученные экстракты после отделения от водных фаз смешивают с раствором олеата бария в бензоле и подвергают пиролизу после отгонки растворителя при 600°С в течение 1 часа. Технический результат заключается в упрощении способа получения катализатора. 1 з.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к технологии изготовления тонких слоев силиката висмута, которые обладают высокой диэлектрической постоянной и могут найти применение для создания диэлектрических слоев на токопроводящих поверхностях, используемых в качестве фоторефрактивного материала в устройствах записи и обработки информации, в тонкопленочных конденсаторах. Способ осуществляют путем плазменно-электролитического оксидирования поверхности титана в силикатном электролите, содержащем Na2SiO3, в униполярном гальваностатическом режиме при эффективной плотности тока 0,20-0,25 А/см2 в течение 10-15 мин с последующей пропиткой сформированного слоя раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и пиролизом при температуре 650-700°C. Технический результат - сокращение времени осуществления способа, упрощение способа и его аппаратурного оформления. 1 з.п. ф-лы, 2 табл., 2 пр., 3 ил.
Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных покрытий для ламп низкого давления. Сначала смешивают органические экстракты лантана, церия и тербия из азотнокислых растворов в мольном соотношении 0,8:0,15:0,05, соответственно, и в объемном соотношении 7:1:0,8, соответственно. Объединенный экстракт смешивают с трибутилфосфатом в объемном соотношении, равном соответственно (48-50) к 1, и проводят пиролиз этой смеси при 600-700 °С в течение 2 часов. Полученный люминофор фосфат лантана, активированный церием и тербием, имеет состав La0,8Ce0,15Tb0,05PO4, обладает максимальной интенсивностью люминесценции в области 530-560 нм и представляет собой нанодисперсный порошок с размерами частиц 40 нм.3 з.п. ф-лы, 6 пр.

Способ относится к технологии изготовления сегнетоэлектрических покрытий на токопроводящих поверхностях, в частности тонких слоев титаната висмута на титане, и может быть использовано при создании диэлектрических слоев в качестве фоторефрактивного материала в устройствах записи и обработки информации, в тонкопленочных конденсаторах, при изготовлении пьезоэлектрической керамики и т.д. Способ включает обработку поверхности изделия из титана методом плазменно-электролитического оксидирования в электролите, содержащем 0,1-0,2 М тетрабората Na2B4O7, в гальваностатическом режиме при анодной поляризации изделия в течение 10-15 минут при эффективной плотности тока 0,20-0,25 А/см2 с формированием слоя оксида титана, который затем пропитывают раствором основного азотнокислого висмута в расплаве канифоли, разбавленным скипидаром, и обжигают при температуре 650-700°C в течение 0,5-1,0 часа с получением тонкого слоя, содержащего Bi4Ti3O12. Технический результат: упрощение технологической схемы способа и уменьшение затрат времени на его осуществление. 1 з.п. ф-лы, 3 ил., 2 табл., 2 пр.
Изобретение может быть использовано при изготовлении конструкционных материалов для атомной энергетики, теплотехники, а также как исходное сырье для получения коллоидного графита, окиси графита и расширенного графита. Способ очистки зольного графита включает обработку графита водным раствором соли - бифторида аммония. После этого смесь нагревают до 190-200 °С со скоростью порядка 1°/мин, выдерживают до тех пор, пока бифторид аммония не прореагирует с основной частью примеси двуокиси кремния SiO2, присутствующей в графите, например 30 мин. Затем повышают температуру до 400 °С со скоростью ~2-5°/мин и выдерживают до прекращения возгонки кремнефторида аммония, образующегося при фторировании бифторидом аммония примеси двуокиси кремния, например 2 ч. Полученный продукт охлаждают до комнатной температуры и повторно обрабатывают бифторидом аммония. После этого смесь нагревают со скоростью порядка 2-5°/мин до 190-200 °С и выдерживают до разложения алюмосиликатов, присутствующих в графите, и оставшейся двуокиси кремния, например 2 ч. Затем графит охлаждают до комнатной температуры и выщелачивают при нагревании 10 % раствором соляной кислоты при Т:Ж=1:8 или 15 % раствором азотной кислоты при Т:Ж=1:5, промывают водой до нейтральной среды. Полученную смесь фильтруют, осадок промывают водой и высушивают. Чистота полученного графита 99,97-99,98 %. 5 з.п. ф-лы, 2 пр.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и оксидом магния, который используют в качестве стабилизирующего компонента, препятствующего переходу диоксида циркония из тетрагональной структуры в моноклинную при нагревании. Затем добавляют смесь аммония фосфорнокислого 2-х замещенного (NH4)2HPO4 и кальция углекислого CaCO3. При этом исходная смесь содержит компоненты в следующем соотношении, мас. %: 72-73 ZrO2, 4-5 MgO, 6-8 (NH4)2HPO4, 7-9 CaCO3 и 8-8,5 стекло марки ХС-2 №29. Смесь истирают на вибромельнице, после чего 90% частиц имеют размер менее 50 мкм, далее прессуют в пресс-форме под давлением 100 МПа/см2 и прокаливают в муфельной печи при температуре 1300°С. В результате получают пористую биоактивную керамику на основе оксида циркония, в которой поры выстланы изнутри биоактивным слоем - частицами фосфатов кальция с прочностью на сжатие не ниже 100 МПа. Способ обеспечивает одновременное получение биоинертной матрицы с биоактивным покрытием в одну стадию. 7 пр.
Изобретение относится к синтезу гептатанталатов европия EuTa7O19 или тербия TbTa7O19, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных элементов готовят прекурсор, содержащий соединения тантала и редкоземельного элемента - европия или тербия, и проводят его термообработку. Для приготовления прекурсора используют экстракты, содержащие указанные элементы в органических растворителях, которые смешивают в мольном отношении тантала к европию или тербию, равном 7:1. Для приготовления экстракта тантала его экстрагируют бензольным раствором сульфата триалкилбензиламмония из сульфатооксалатного водного раствора тантала. Для приготовления экстрактов европия или тербия их экстрагируют бензольным раствором, содержащим ацетилацетон и фенантролин, из нитратных водных растворов европия или тербия. Термообработку прекурсора проводят при температуре 880-900°C. Изобретение позволяет сократить длительность термообработки, снизить ее температуру и получить наноразмерные танталаты редкоземельных элементов с размером частиц 50-100 нм без дополнительной стадии измельчения. 5 з.п. ф-лы, 6 пр.

Изобретение относится к пирогидрометаллургии вольфрама, в частности к извлечению вольфрама из шеелитовых CaWO4 и вольфрамитовых (Fe, Mn) WO4 концентратов в виде соединений, являющихся товарной продукцией. Способ предусматривает обработку вольфрамового концентрата бифторидом аммония при нагревании с добавлением бифторида аммония частями в 2 этапа, при этом обработку вольфрамового концентрата на каждом этапе ведут при 170-180°C и суммарном массовом отношении бифторида аммония к вольфрамовому концентрату, равном (1,5-2):1, с последующим выщелачиванием профторированного продукта водой, гидролизом раствора, полученного после выщелачивания, раствором аммиака с отделением осадка и упариванием фильтрата до сухих солей, содержащих смесь диоксопентафторовольфрамата аммония (NH4)3WO2F5 и бифторида аммония NH4HF2, нагреванием этой смеси при 240°C для возгона бифторида аммония и получения конечного товарного продукта диоксотетрафторовольфрамата аммония (NH4)2WO2F4. Обработку вольфрамового концентрата бифторидом аммония на первом этапе ведут в течение 3 ч, а на втором - в течение 2 ч. После каждого этапа обработки вольфрамового концентрата бифторидом аммония полученный продукт охлаждают до комнатной температуры. Для более полного перевода вольфрама в раствор выщелачивание профторированного продукта проводят путем 3-кратного растворения его в воде при Т:Ж, равном 1:5, и соответственно трехкратного фильтрования полученного раствора с осадком. Гидролиз раствора, полученного после выщелачивания, проводят концентрированным раствором аммиака до pH 12. Технический результат - оптимизация способа переработки вольфрамовых концентратов путем снижения температуры процесса. 4 з.п. ф-лы, 1 ил., 6 пр.

Изобретение относится к области медицины и касается биоматериалов для заполнения дефектов костной ткани на основе реакционно-твердеющей смеси, содержащей фосфаты кальция и водорастворимый органический полимер. В качестве фосфатов кальция реакционно-твердеющая смесь содержит трикальцийфосфат (ТКФ) и монокальцийфосфат моногидрат (МКФМ), в качестве растворимого органического полимера - полиэтиленгликоль (ПЭГ). Дополнительно реакционно-твердеющая смесь содержит 30%-ную коллоидную суспензию диоксида кремния в воде при следующем соотношении компонентов, масс.%: трикальций фосфат ТКФ 21,35-36,66; монокальций фосфат моногидрат МКФМ 13,71-19,86; 30%-ная коллоидная суспензия диоксида кремния в воде 39,13-54,0; полиэтиленгликоль ПЭГ 1,0-10,0. Реакционно-твердеющая смесь дополнительно содержит фосфаты стронция - тристронцийфосфат (ТСФ) или моностронций фосфат моногидрат (МСФМ) в количестве 1-10 масс.% сверх 100%, что приводит к улучшению остеоинтеграции кальций-фосфатного цемента. 1 з.п. ф-лы, 1 табл., 3 пр.
Изобретение относится к металлургии благородных металлов, в частности к способу переработки упорных высокоуглеродистых золотоносных пород. Способ переработки включает флотацию графита и извлечение золота выщелачиванием кислыми растворами тиомочевины. При этом перед выщелачиванием хвосты флотации подвергают сухой магнитной сепарации. Сухую магнитную сепарацию осуществляют в магнитном поле 800-1000 эрстед с концентрированием золота в немагнитной фракции c содержанием 5,2-5,6 г/т золота. Выщелачиванию упомянутым кислым раствором тиомочевины подвергают немагнитную фракцию. Техническим результатом является снижение удельного расхода реагентов при переработке высокоуглеродистых золотоносных пород и, соответственно, повышение эффективности процесса в целом. 3 пр.
Изобретение относится к получению оксидных покрытий тантала на подложке из титана и его сплавов и может быть использовано для формирования покрытий пентаоксида тантала для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными, оптическими характеристиками, а также для получения имплантатов с электретными свойствами. В способе покрытие формируют из содержащего тантал органического раствора, в качестве которого используют экстракт, полученный экстракцией тантала сульфатами длинноцепочечных третичных аминов или четвертичных аммониевых оснований из сульфатооксалатного раствора тантала, при этом экстракт наносят на подложку и осуществляют обжиг подложки при температуре 600-700°С. Также в способе перед нанесением на подложку экстракты предварительно упаривают для отгонки растворителя до получения маслообразного экстракта. Использование экстракционно-пиролитического метода позволяет упростить формирование покрытий из Та2О5 на титановых подложках. 1 з.п. ф-лы, 4 пр.
Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ формирования покрытия пентаоксида тантала на подложке включает формирование покрытия из прекурсора - фторидного соединения тантала, при этом покрытие формируют методом плазменно-электролитической обработки подложки импульсным током во фтортанталатном электролите на проводящей металлической подложке из титана или его сплава в диапазоне напряжений от 50 до 300 В в потенциостатическом режиме. Технический результат: упрощение способа нанесения покрытия пентаоксида тантала, при этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов. 1 з.п. ф-лы, 7 пр.
Изобретение относится к медицине. Описан способ получения кальций-фосфатных стеклокерамических материалов, который может быть использован в медицине, а именно в стоматологии и ортопедии для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для формирования зубных пломб, зубных паст. Способ включает приготовление смеси, содержащей соединения кальция, фосфора, кремния и натрия, пропитку полученной смесью биоинертной не выгорающей пористой матрицы в виде керамики из оксидов алюминия или циркония с последующим прокаливанием, при этом в качестве соединения кремния используют тетраэтоксисилан, в качестве соединения фосфора используют эфир фосфорной кислоты, а в качестве соединений кальция и натрия используют их карбоксилаты в полярном органическом растворителе. Способ обеспечивает получение стеклокерамики непосредственно из раствора, минуя стадию приготовления золя, что позволяет формировать на пористых биоинертных имплантатах биоактивные кальций-фосфатные слои, повторяющие форму пор, что существенно упрощает способ и сокращает время процесса. Кроме того, способ предусматривает формирование тонких слоев на более прочной биоинертной пористой керамике. При этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов. 6 з.п. ф-лы, 5 пр.
Изобретение относится к области гидрометаллургии редких металлов. Способ обработки смеси оксидов ниобия и/или тантала и титана для отделения ниобия и/или тантала от титана включает растворение смеси при нагревании в растворе фтористоводородной кислоты с получением фторидного раствора. В полученный фторидный раствор добавляют при перемешивании раствор гидроксида тетраметиламмония или его соль и выпаривают досуха. Образовавшиеся комплексные фториды ниобия и/или тантала и титана с катионом тетраметиламмония обрабатывают низкомолекулярным алифатическим кетоном для экстрагирования комплексных фторидов ниобия и/или тантала в виде гексафторниобата и/или гексафтортанталата тетраметиламмония в раствор. Гексафтортитанат тетраметиламмония получают в осадке. Техническим результатом изобретения является повышение степени отделения ниобия и/или тантала от титана, упрощение способа за счет сокращения числа стадий и времени процесса отделения, а также снижение объемов перерабатываемых растворов. 7 з.п. ф-лы, 9 пр.

Изобретение относится к способам химического анализа и может быть использовано для определения содержания золота в рудах различного минералогического типа и продуктах их технологической переработки (хвостах, концентратах). Сущность: перед проведением нейтронно-активационного анализа осуществляют фторирование анализируемой пробы с мешающими примесями гидроди-фторидом аммония. Причем массовое соотношение гидродифторида аммония к массе анализируемой пробы составляет (2-3):1. Фторирование ведут при нагревании пробы в течение времени, достаточного для обеспечения фторирования мешающих примесей. Профторированную смесь подвергают прокаливанию для перевода мешающих примесей в газовую фазу. Технический результат: снижение порога определения золота нейтронно-активационным анализом без потерь золота в золотосодержащих материалах. 2 з.п. ф-лы, 1 ил.
Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания
Изобретение относится к способам получения наноразмерных высокочистых порошков гидроксиапатита (ГАП), который может быть использован для производства сорбентов, медицинских материалов, например, стимулирующих восстановление дефектов костной ткани, для формирования зубных пломб, зубных паст
Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов ДВС, содержащих в активной фазе оксиды редкоземельных металлов и металлы платиновой группы

Изобретение относится к получению неорганических соединений на основе марганца, конкретно к нанодисперсным манганитам редкоземельных металлов (РЗМ), обладающим ценными магнитными и каталитическими свойствами, общей формулы RMnO3, где R - трехвалентный редкоземельный ион
Изобретение относится к гидрометаллургии золота и может быть использовано для извлечения золота из концентратов, характеризующихся повышенным содержанием таких металлов-примесей, как медь, ртуть, мышьяк, висмут
Изобретение относится к способам получения нанодисперсных ферритов редкоземельных металлов (РЗМ), обладающих ценными магнитными свойствами
Изобретение относится к производству строительных материалов, а именно к составам бетонных смесей на основе неорганических связующих, содержащих отходы производств, в частности гальванические шламы, и может быть использовано при изготовлении декоративных бетонных строительных изделий и конструкций

Изобретение относится к способу раздельного извлечения золота и серебра из тиоцианатных растворов

Изобретение относится к способам переработки бор-, силикатсодержащего сырья, в частности датолитового концентрата, и может быть использовано для получения товарных боропродуктов, таких как борная кислота и другие соединения бора, а также таких товарных продуктов, как аморфный диоксид кремния и фторид кальция
Изобретение относится к гидрометаллургии благородных металлов (БМ) и может быть использовано для извлечения золота или серебра электролизом из тиокарбамидных растворов, преимущественно из растворов с высоким содержанием железа
Изобретение относится к способам извлечения золота и серебра из сульфидных концентратов и концентратов, полученных из техногенных россыпей
Изобретение относится к моющим составам для удаления высокотемпературных минеральных отложений с внутренних поверхностей теплообменного оборудования

 


Наверх