Патенты автора Бричкин Вячеслав Николаевич (RU)

Изобретение относится к цветной металлургии и может быть использовано для получения глинозёма и попутной продукции способом спекания из высококремнистого алюминиевого сырья. Техническим результатом является рост химического извлечения Al2O3 и расширение сырьевой базы глинозёмного производства за счёт использования каолиновых руд различного состава, который достигается за счёт того, что в состав шихты вводится углеродсодержащий компонент в количестве, обеспечивающем наилучшие условия формирования фазового состава спёка, благоприятного для последующей переработки. Состав шихты для производства глинозёма включает каолиновую руду и известняк. Шихта дополнительно содержит углеродсодержащую добавку, а её состав удовлетворяет следующему содержанию сырьевых компонентов, мас. %: каолин – 68,5-72,3; известняк – 26,3-28,6; углеродсодержащая добавка 0,5-3,8, количество которой определяется экспериментально по контролируемым показателям технологического процесса. 1 табл., 25 пр.

Изобретение относится к области строительства и обслуживания скважин, в частности к тампонажным смесям для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Тампонажная смесь содержит 46,6-59 мас. % портландцемента, 6,6-10 мас. % кремнегеля, 3,3-6,6 мас. % оксида кальция и воду - остальное. Техническим результатом является разработка состава тампонажной смеси, при котором образующийся цементный камень обладает повышенными значениями прочности на изгиб. 1 табл.
Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур с неодимом, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия, а также в качестве легирующих добавок при производстве чугунов и сталей. Способ включает введение в жидкий магний смеси фторида неодима с флюсом. В качестве флюса используют смесь хлорида калия, хлорида натрия, хлорида кальция, хлорида магния и фторида кальция. Расплавляют полученную смесь и осуществляют перемешивание со скоростью от 150 до 350 об/мин при температуре от 710 до 770°С и времени выдержки от 20 до 40 мин с обеспечением полной обменной реакции расплавленных солей и магния с получением лигатуры. Осуществляют отстаивание, после чего полученную лигатуру разливают в изложницы, а оставшуюся смесь солей отправляют на повторный переплав. Техническим результатом является повышение степени извлечения неодима в магниевую лигатуру. 5 пр.

Изобретение относится к технологии получения неорганического коагулянта, используемого для очистки сточных вод. Способ получения кальцийалюмосиликатного неорганического коагулянта включает смешение кальцийсодержащего материала с кремнеземсодержащим минералом и последующую термообработку. Кальцийсодержащий материал (известняк) смешивают с кремнеземсодержащим минералом (каолином) из расчета получения весового соотношения CaO:SiO2=3,0, СаО:Al2O3=1,4-2,1. Смесь обжигают при температуре от 1285 до 1300°С не менее 10 минут и полученный материал размалывают. Техническим результатом изобретения является повышение коагуляционной активности кальцийалюмосиликатного неорганического коагулянта и повышение скорости седиментации сапонита из оборотной воды после обогащения алмазоносной сапонитовой руды. 3 табл., 3 пр.
Изобретение относится к литейному производству и может быть использовано при получении жаропрочных сплавов на основе магния марок МЛ10, МЛ19 и в системах: Mg-Y-Sm-Zn-Zr, Mg-Sn-Zn-Y, Mg-Gd-Y-Zn-Mn, Mg-Y-Zn-Zr, Mg-Gd-Y-Zn-Zr. Лигатура содержит, мас. %: цинк 10-40, иттрий 15-40, магний - остальное. Изобретение позволяет полностью и равномерно распределить легирующие элементы в жаропрочных магниевых сплавах, при этом лигатура предложенного состава обладает повышенной технологичностью. 3 пр.

Изобретение может быть использовано в области горнорудной промышленности при обогащении алмазоносных кимберлитовых пород. Способ включает извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания. Пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин. Полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента состава, мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4% в количестве от 2 до 5 г на 400-500 мл разбавленной пульпы. Способ обеспечивает увеличение скорости сгущения пульпы при отстаивании, сокращение расхода свежей воды и исключение сброса производственных стоков. 4 ил., 3 пр.
Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и в производстве сталей и чугунов. Способ получения лигатуры магний - цинк - литий включает расплавление смеси солей и восстановление металла сплавом магния и цинка, при этом расплавление солей, в качестве которых используют смесь, содержащую, мас. %: фторид иттрия 20-30, фторид натрия 15-20, хлорид калия 30-35, хлорид натрия 25-30, проводят в плавильной печи с перемешиванием расплава со скоростью от 50 до 150 об/мин, проведение полной восстановительной реакции расплавленных солей и магния с цинком осуществляют при температуре от 670 до 800°С и времени выдержки от 15 до 40 мин, после проведения полной восстановительной реакции полученную лигатуру разливают в изложницы. Изобретение направлено на повышение степени извлечения восстанавливаемого металла в магниевую лигатуру. 7 пр.

Изобретение может быть использовано в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов. Способ сгущения сапонитовой суспензии включает осаждение частиц для последующего отделения образующегося осадка и обработку коагулянтом. Слив классификатора разбавляют водой в реакторе до плотности от 1250 до 1350 кг/м3, затем суспензию подают в сгуститель, снабженный мешалкой, и обрабатывают коагулянтом. В качестве коагулянта используют оксихлорид алюминия с 15% концентрацией рабочего коагулянта по Al2O3. Проводят перемешивание со скоростью от 80 до 110 об/мин и разделяют твердую и жидкую фазы. Жидкую фазу подают обратно в цикл, а сгущенную твердую фазу - в хвостохранилище. Способ обеспечивает получение очищенной воды с использованием всех технологических вод после процесса обогащения, что позволяет организовать систему оборотного водоснабжения, сократить расход свежей воды и исключить сброс производственных стоков. Кроме того, полученный осадок сгущенной твердой фазы пригоден для конусного складирования. 3 ил., 3 пр.

Изобретение относится к способам производства строительных материалов и может быть использовано для получения вяжущих, в частности цементов, на основе гидроалюминатов кальция. Техническим результатом предлагаемого изобретения является сокращение сроков схватывания алюминатного вяжущего и ускорение времени набора прочности, что позволяет осуществить перевод такого вяжущего в разряд быстросхватывающихся и быстротвердеющих. В способе получения вяжущего путем обработки известьсодержащего компонента щелочным алюминатным раствором с последующим отделением, промывкой и сушкой образующегося осадка, в качестве известьсодержащего компонента используют твердый раствор ангидрида угольной кислоты в четырехкальциевом гидроалюминате, который обрабатывают щелочным алюминатным раствором с кремниевым модулем от 200 до 1000 единиц в течение 3 часов при дозировке известьсодержащего компонента в пересчете на активный оксид кальция от 4 до 12 г/л, а полученный осадок сушат при температуре от 350 до 450°С до величины потери веса при прокаливании осадка в пределах от 7,5 до 8,5% и подвергают диспергации до размера частиц менее 50 мкм. 1 табл., 9 пр.

Изобретение относится к технологии производства портландцементного клинкера из нефелинового шлама, являющегося отходом производства глинозема при комплексной переработке алюминийсодержащего сырья. Способ заключается в гидрохимической обработке нефелинового шлама для производства портландцементного клинкера воздействием на шлам углекислым газом в водной среде при температуре 25-95°C в течение 2-6 ч и последующей обработкой щелочным раствором. При этом исходный поток нефелинового шлама делится на две части, одна из которых подлежит гидрохимической обработке с получением продукта, отвечающего молярному соотношению CaO/SiO2>3, и затем смешивается со второй частью нефелинового шлама до достижения состава сырьевой смеси, необходимого для получения алитового клинкера. Техническим результатом изобретения является снижение потока нефелинового шлама, поступающего на гидрохимическую обработку, и материалов, поступающих на вспомогательные технологические операции по разделению продуктов и промывке шлама, следствием чего является уменьшение затрат на их осуществление. 12 пр., 1 табл., 2 ил.

Изобретение может быть использовано при переработке алюминийсодержащего сырья, в том числе бокситов, нефелинов. Способ получения гидроксида алюминия включает декомпозицию алюминатного раствора в присутствии затравки, фильтрацию гидроксида алюминия и его сушку. Декомпозицию выполняют при введении затравки в количестве от 20 до 100 г/л. В качестве затравки используют гидроксид алюминия после его термической обработки с высокоскоростным нагревом частиц до температуры 340-630°C и их последующим охлаждением. Изобретение позволяет повысить скорость разложения алюминатного раствора и получить высокодисперсный гидроксид алюминия. 1 табл., 9 пр.

Изобретение может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов. Разложение алюминатного раствора выполняют путём карбонизации газами, содержащими СО2, при температуре от 20 до 40°С при начальной концентрации каустической щёлочи в растворе от 26 до 95 г/л в пересчёте на Na2Oк и каустическом модуле раствора от 1,5 до 1,9. Содержание СО2 в газе от 12 до 98%. Скорость нейтрализации каустической щёлочи составляет в пересчёте на Na2Oк от 2,2 до 80 г/л⋅час. Процесс проводят до достижения требуемой концентрации углекислой щёлочи и степени разложения алюминатного раствора. Гидроксид алюминия, образовавшийся в процессе карбонизации, отделяют от жидкой фазы и перерабатывают на глинозём. Изобретение позволяет получать высокодисперсный гидроксид алюминия и глинозём на его основе с заданным средним диаметром частиц, соответствующих кристаллической структуре гиббсита и имеющих изометричную форму или соответствующих кристаллической структуре байерита и имеющих пластинчатую или сферическую форму, повысить выход гидроксида алюминия. 6 ил.

Изобретение может быть использовано в цветной металлургии для приготовления шихты при производстве глинозема из низкокачественного алюмосиликатного сырья. Способ подготовки шихты включает измельчение алюмосиликатного сырья на содовом растворе в мельнице, гидроциклонирование пульпы по классу 0,25 мм, выведение песков гидроциклона крупностью более 0,25 мм из процесса, слив гидроциклона крупностью менее 0,25 мм на измельчение в мельницу, работающую в замкнутом цикле с гидроциклоном, возвращение песков гидроциклона крупностью более 0,063 мм на доизмельчение в мельницу, направление слива крупностью менее 0,063 мм, являющегося готовым продуктом, на металлургический передел. Способ обеспечивает снижение энергозатрат на измельчение и увеличение производительности обогатительных и металлургических аппаратов и, соответственно, уменьшение потерь ценных минеральных компонентов со шламами при переработке алюмосодержащих руд. 1 ил.

Изобретение относится к области химии и цветной металлургии и может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов, методом спекания. Предложенный способ включает деление раствора после первой стадии обескремнивания на содощелочную и содовую ветви, при этом раствор в содощелочной ветви подвергают декомпозиции и карбонизации, а в содовой ветви раствор после глубокого обескремнивания подвергают карбонизации. Согласно изобретению разложение алюминатного раствора в содощелочной и содовой ветви выполняется путем декомпозиции, с последующей карбонизацией растворов газами содержащими СО2, обеспечивающими снижение концентрации каустической щелочи в растворе со скоростью на уровне 10 г/л·ч, до достижения требуемой концентрации углекислой щелочи и степени разложения алюминатного раствора. Техническим результатом изобретения является увеличение среднего диаметра частиц продукционного гидроксида алюминия и снижение выхода фракции менее 45 мкм при комплексной переработке нефелинового концентрата, а также формирование механически устойчивой структуры осадка, исключающей повышенное измельчение частиц глинозема в процессе кальцинирующего обжига. 1 ил., 12 пр.

Изобретение относится к способам получения активного гидроксида алюминия, пригодного для получения эффективного коагулянта - гидроксохлорида алюминия, а также катализаторов, осушителей и сорбентов. Способ включает смешение кристаллических солей алюминия и карбоната натрия в твердом виде при расходе карбоната натрия 4-6 моль на 1 моль Al2O3. В качестве соли алюминия берут его нитрат Al(NO3)3·9H2O или хлорид AlCl3·6H2O. Полученную реакционную массу выщелачивают водой при температуре не выше 50°C с образованием суспензии, из которой выделяют алюминийсодержащий осадок. Осадок промывают водой при температуре 60-80°C до величины pH промывной воды не более 7,5 и сушат. Технический результат - получение химически активного по отношению к соляной кислоте гидроксида алюминия, снижение количества жидких отходов, повышение экологичности способа. 3 з.п. ф-лы, 3 пр.

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ глубокого обескремнивания алюминатных растворов заключается в обработке извести алюминатно-щелочным раствором с получением алюмокальциевого компонента, двухстадийном обескремнивании алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмокальциевого компонента, сгущении и фильтрации продуктов обескремнивания, осветлении обескремненного раствора, согласно изобретению шлам от второй стадии обескремнивания вводят в осветленный алюминатный раствор после первой стадии обескремнивания, проводят экспозицию полученной пульпы в течение 30 минут и затем в пульпу вводят алюмокальциевый компонент двумя последовательными порциями с интервалом 30 минут в количестве, составляющем 50% от общей потребности вводимого реагента. Изобретение позволяет снизить расход алюмокальциевого компонента до 1,7÷2,6 г/л по СаОакт в его составе для достижения практически полного разделения ионов Al(III) и Si(IV) в среде сильных электролитов, получить глинозем высших марок Г-00 и Г-000, а также повысить технико-экономические показатели производства глинозема из высококремнистого сырья. 2 ил., 12 пр.

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ обескремнивания алюминатных растворов заключается в получении алюмо-кальциевого компонента, двухстадийном обескремнивании алюминатно-щелочных растворов с использованием в качестве интенсифицирующей добавки полученного алюмо-кальциевого компонента, сгущении и фильтрации продуктов обескремнивания, осветлении обескремненного раствора, согласно изобретению получение указанного алюмо-кальциевого компонента проводят обработкой карбоната кальция природного и/или искусственного происхождения алюминатно-щелочным раствором при молярном отношении CaO:Al2O3=1,0÷2,0. Изобретение позволяет снизить расход энергоресурсов, утилизировать производственные отходы карбоната кальция, снизить потребление природных ресурсов и выбросов диоксида углерода в атмосферу, получить глинозем высшего качества марки Г-00, а также повысить технико-экономических показатели производства глинозема из высококремнистого сырья. 1 ил., 9 пр.

Изобретение относится к катодному устройству алюминиевого электролизера

Изобретение относится к металлургии, а именно к устройствам, используемым при производстве алюминия электролитическим способом

Изобретение относится к металлургии, а именно к средствам контроля химического состава расплава электролизера, в частности алюминиевого
Изобретение относится к способу получения высокоглиноземистого цемента, в частности к их производству при комплексной переработке алюминийсодержащего сырья

 


Наверх