Патенты автора Низовцев Владимир Евгеньевич (RU)

Изобретение относится к области композиционных материалов на основе карбида кремния, применяемых для оборудования нефтегазодобывающей и нефтегазоперерабатывающей промышленности (подшипники и уплотнения насосов, погружных агрегатов) и химических установок, в авиационной промышленности (детали поршневого, роторно-поршневого и газотурбинного двигателя). Технический результат изобретения: снижение процента брака, повышение прочности и твердости. Способ изготовления изделий из реакционно-спеченного композиционного материала включает формование заготовки на основе композиции, состоящей из мелкодисперсного наполнителя, представляющего смесь инертного к кремнию при технологических параметрах процесса силицирования карбида кремния и активных к кремнию элементов и соединений: углерода, молибдена и карбида молибдена, образующих при взаимодействии с ним тугоплавкие карбиды, силициды или тройные соединения, и временного связующего, обжиг сформованной заготовки при конечной температуре, соответствующей температуре полного удаления летучих продуктов временного связующего, и ее силицирование при массопереносе кремния в поры материала заготовки путем его капиллярной конденсации за счет создания низкой степени их пресыщения. Порошки активного к кремнию элемента или соединения и карбида кремния берут в соотношении 1:10 по гранулометрическому составу. Силицирование проводят при температуре 1500-1550°С. 1 табл., 6 пр.

Изобретение относится к роторно-поршневым двигателям внутреннего сгорания с контактной системой уплотнений. Радиальное уплотнение роторно-поршневого двигателя внутреннего сгорания выполнено в виде элементов скольжения, состоящих из интеркерамоматричного композиционного материала следующего состава, мас. %: оксид магния (MgO) - 4,0-5,0; гексагональный нитрид бора (BN) - 2,0-3,0; оксид бора (В2О3) - 1,0-2,0; α-нитрид кремния (Si3N4) - остальное. Технический результат заключается в повышении надежности, работоспособности и ресурса радиальных уплотнений. 4 ил., 1 табл.

Изобретение относится к двигателестроению, а именно к торцевым уплотнениям роторно-поршневого двигателя внутреннего сгорания, и может быть использовано при изготовлении элементов трения торцевых уплотнений, герметизирующих зазор между вращающимися деталями в корпусах аппаратов, машин и механизмов, содержащих рабочую среду под давлением. Упомянутое торцевое уплотнение содержит пару трения из вращающихся и невращающихся элементов, контактирующих друг с другом торцевыми поверхностями с различной твердостью. Неподвижные элементы пары трения изготовлены из реакционно-спеченного карбида кремния с твердостью поверхности 90-94 HRC. Вращающиеся элементы изготовлены из легированного рением, хромом и ванадием карбонитрида титана с твердостью поверхности 86-90 HRC. Неподвижные элементы пары трения имеют чистоту обработки поверхности 0,32-0,08 мкм, а подвижные - 0,63-0,16 мкм. Обеспечивается увеличение долговечности трибологической пары, а также упрощение технологии изготовления элементов пары трения, при этом элементы трения обладают высокой прочностью, твердостью, износостойкостью и низким коэффициентом трения. 1 ил., 1 табл., 2 пр.

Изобретение относится к области двигателестроения, а именно к роторно-поршневым двигателям внутреннего сгорания, и может быть использовано для теплоизоляции корпуса двигателя. Корпус двигателя с расположенными в нем впускным и выпускным каналами содержит нанесенное на внутреннюю поверхность корпуса двигателя и внутреннюю поверхность выпускного канала корпуса двигателя теплоизоляционное покрытие. Покрытие корпуса выполнено из интеркерамоматричного композиционного материала на основе реакционно-спеченного кремния SiC, диборида циркония ZrB2, дисилицида циркония ZrSi2, ультрадисперсного углерода С и ванадия V при определенном соотношении компонентов в мас.% с образованием фазы Новотного состава Zr5Si3C. Покрытие внутренней поверхности выпускного канала корпуса выполнено из материала на основе пористого карбида кремния SiC, модифицированного волокнами нитрида кремния Si3N4 при определенном соотношении компонентов в мас.%. Изобретение направлено на повышение теплозащитных, адгезионных и прочностных свойств покрытия внутренней поверхности корпуса роторно-поршневого двигателя и внутренней поверхности выпускного канала корпуса роторно-поршневого двигателя. 1 табл., 2 ил.

Изобретение относится к области порошковой металлургии и предназначено для производства износостойких сплавов на основе карбонитрида титана, работающих в сложных условиях динамического нагружения, высоких контактных давлений и скоростей. Композиционный порошок на основе карбонитрида титана TiC0,5N0,5 для получения спеченного износостойкого сплава для высоконагруженных узлов трения содержит 20 - 30 мас.% вольфрама, 2,5 - 3 мас.% селена, 4,5 - 6 мас.% галлия, 2,5 - 4 мас.% индия и остальное карбонитрид титана TiC0,5N0,5. Соотношение вольфрама W к селену Se находится в пределах 7,3 - 8,0. Обеспечивается высокая износостойкость при высоких температурах, что обеспечивает эксплуатационную надежность высоконагруженных узлов трения. 2 табл.

Изобретение относится к способам изготовления изделий из огнеупорных материалов методом трехмерной печати и может найти применение в различных отраслях машиностроения. Способ заключается в том, что при изготовлении изделия из огнеупорных материалов методом трехмерной печати в камере формирования образуют первичный слой порошкообразного керамического материала, представляющего собой однородную смесь, состоящую из крупнозернистой и мелкозернистой фракций. В качестве компонентов крупнозернистой и мелкозернистой фракций используют карбид кремния и/или карбид бора и/или нитриды кремния, алюминия, бора и/или каустический периклазовый порошок и/или графит. При этом массовая доля крупнозернистой фракции составляет от 50 до 80%, а мелкозернистая фракция представляет собой смесь дисперсной, ультрадисперсной и нанодисперсной фракций, каждая из которых составляет определенную массовую долю. Наносят жидкое связующее на ограниченную область, соответствующую конфигурации поперечного сечения изделия. Образуют последующие слои порошкообразного керамического материала и жидкого связующего до окончания формирования изделия. Извлекают излишки порошкообразного керамического материала из камеры формирования. Отверждают изделие путем нагрева до определенной температуры и подвергают изделие последующему отжигу при температуре от 1700 до 2000°С. Техническим результатом изобретения является обеспечения изотропности свойств при повышенной термопрочности. 1 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к области авиационного моторостроения и может быть использовано в подшипниках скольжения межроторных опор газотурбинных двигателей. Подшипник скольжения межроторной опоры включает наружное и внутреннее кольца. выполненные из металлокерамоматричного материала на основе соответственно карбонитрида титана и нитрида алюминия при заданном соотношении компонентов. Кольца расположены внутри вала роторов высокого и низкого давления. Технический результат: обеспечение требуемого уровня микротвердости материала колец подшипника скольжения при температурах до 500°С, что позволяет повысить износостойкость и долговечность подшипника скольжения межроторной опоры газотурбинного двигателя. 2 ил., 1 табл.

Изобретение относится к области конструкционных материалов, а именно к способам изготовления высокотемпературных, износостойких и коррозионно-стойких изделий из реакционно-спеченного композиционного материала на основе карбида кремния, и может быть использовано в ряде отраслей промышленности, в том числе авиационной. Технический результат заключается в снижении энергоёмкости процесса силицирования. Сущность изобретения состоит в формовании заготовки на основе композиции, состоящей из мелкодисперсного наполнителя и временного связующего, обжиге сформованной заготовки при температуре, обеспечивающей полное удаление летучих продуктов из временного связующего, и силицировании заготовки парожидкофазным методом в вакууме в парах кремния при массопереносе кремния в поры материала путем капиллярной конденсации паров. Мелкодисперсный наполнитель представляет собой смесь инертного к кремнию при технологических параметрах процесса силицирования соединения и активного по отношению к нему элемента или соединения, образующих с кремнием тугоплавкие карбиды и/или силициды и/или тройные соединения, причем размер частиц активного и пассивного элементов берут в соотношении не менее чем 1:5 при неизменном их гранулометрическом составе. Размер частиц инертного к кремнию соединения не превышает 25 мкм. Силицирование осуществляют при конечной температуре 1300-1400°С. 1 табл.

Изобретение относится к области авиационного моторостроения и может быть использовано в межроторных опорах газотурбинных двигателей. Межроторная опора газотурбинного двигателя включает подшипник скольжения, содержащий внутреннее кольцо подшипника, выполненное из композиционного материала на основе дисперсно-упрочненного реакционно-спеченного карбонитрида кремния и закрепленное на валу ротора низкого давления, наружное кольцо, выполненное из металлокерамоматричного материала на основе нитрида титана при определенном соотношении компонентов и расположенное внутри вала ротора высокого давления, а опора снабжена шарнирным элементом, представляющим собой опорное кольцо, выполненное из жаропрочной стали, установленное на наружном кольце подшипника. При этом внешняя поверхность опорного кольца выполнена в виде полусферы, взаимодействующей с соответствующей внутренней поверхностью вала ротора высокого давления. Технический результат заключается в исключении воздействия изгибающих моментов на подшипник в процессе рабочего цикла при одновременном повышении износостойкости подшипника опоры, что обеспечивает повышение надежности межроторной опоры. 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Цилиндропоршневая группа двигателя внутреннего сгорания содержит гильзу (1) цилиндра и установленный в ней поршень (2) с отверстием (3) под поршневой палец, ось которого перпендикулярна оси цилиндра. Гильза (1) и поршень (2) выполнены из металлокерамоматричного композиционного материала на основе наноструктурного дисперсноупрочненного реакционноспеченного карбида кремния. Гильза (1) имеет градиентную структуру с уменьшением содержания карбида кремния по длине цилиндра. Со стороны камеры сгорания от торца цилиндра на участке, длина которого составляет около 0,4 высоты цилиндра, содержание компонентов составляет, мас.%: карбид кремния (SiC) - 75-93, нитрид кремния (Si3N4) - 6,5-20, углерод - 0,5-5. На оставшемся участке до торца цилиндра, противоположного камере сгорания, содержание компонентов составляет, мас.%: карбид кремния (SiC) - 47-75, нитрид кремния (Si3N4) - 20-43, углерод - 5-10. Поршень (2) армирован не менее чем четырьмя бескерновыми волокнами (4) карбида кремния (SiC), толщина которых составляет 88-95 мкм, расположенными равномерно по окружности и параллельно оси отверстия (3) под поршневой палец на расстоянии (1,3-1,7) диаметра отверстия от оси последнего. Содержание компонентов в поршне (2) составляет, мас.%: карбид кремния (SiC) - 80-93, нитрид кремния (Si3N4) - 18-6,5, углерод - 2-0,5. Технический результат заключается в исключении из конструкции поршневых колец за счет обеспечения постоянного теплового зазора между гильзой цилиндра и поршнем и повышении надежности за счет исключения деформации гильзы и поршня в рабочем процессе. 5 ил., 1 табл.

Изобретение относится к подшипникам скольжения и может быть использовано в ракетно-космической, авиационной, нефтегазодобывающей и перерабатывающей промышленности, в железнодорожном, автомобильном транспорте и других областях промышленности. Подшипник скольжения, включающий корпус, устанавливаемый на цапфу вала или ось непосредственно или через вкладыш или втулку, в котором по крайней мере одна поверхность скольжения имеет наноструктурное антифрикционное покрытие на основе карбонитрида титана. Антифрикционное функционально-градиентное покрытие состоит из порошка карбонитрида титана, легированного кремнием, с фракциями нанодиапазона от 10 до 24 нм, субмикронного уровня - от 0,2 до 0,3 мкм и микронного уровня - от 1 до 5 мкм при следующем содержании фракций, мас. %: нанодиапазона - от 8 до 10, субмикронного уровня - от 50 до 60, микронного уровня - от 30 до 42. Технический результат изобретения - комплексное улучшение физико-механических и эксплуатационных характеристик подшипника за счет высокой твердости до 45-48 ГПа, среднего модуля упругости до 500 ГПа, адгезии к подложке (с максимальной критической нагрузкой до 50 Н), максимального снижения коэффициента трения от 0,01 до 0,015, повышения износостойкости, твердости, термической стабильности, жаропрочности, при одновременном повышении пластичности и прочности карбонитрида титана (TiCN) путем его наноструктурирования и легирования кремнием.
Изобретение относится к подшипникам скольжения и может быть использовано в авиационной, газонефтедобывающей, автомобильной промышленности и энергомашиностроении

Изобретение относится к радиопоглощающему материалу
Изобретение относится к подшипникам скольжения и может быть использовано в авиакосмической, нефтедобывающей, нефтеперекачивающей, нефтеобрабатывающей и иных областях промышленности
Изобретение относится к подшипникам скольжения и может быть использовано в авиационной, газонефтедобывающей, автомобильной и других областях промышленности

Изобретение относится к классу эластичных антирадарных материалов, состав и структура которых обеспечивают эффективное поглощение электромагнитной энергии в диапазоне радиоволн, которые могут найти применение для снижения радиолокационной контрастности летательных аппаратов, а также морских и наземных объектов

Изобретение относится к технологическим процессам для получения технического и наноструктурированного углерода в виде многослойных углеродных нанотрубок и волокон методом взрыва

Изобретение относится к технологии получения технического углерода путем термического разложения углеводородов и может быть использовано в химической, нефтехимической, газовой и лакокрасочной отраслях промышленности

 


Наверх