Патенты автора Зайнулин Юрий Галиулович (RU)

Изобретение может быть использовано в системах визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения. Сначала готовят три исходных раствора I, II, III. Для приготовления раствора I растворяют CaCO3, La2O3 и Eu2O3, взятые в стехиометрическом соотношении, в 60-70%-ной азотной кислоте. Для приготовления раствора II SiO2 добавляют в этиловый спирт, перетирают 2-3 ч, после чего добавляют сухую одноводную лимонную кислоту в количестве 1/3 от массы SiO2 и снова перетирают 1,5-2 ч. Для приготовления раствора III сухую одноводную лимонную кислоту добавляют в водный раствор этилового спирта при соотношении вода : спирт 1:1. Полученные растворы смешивают и проводят выпаривание при 120-140°С в течение 2-3 ч. Затем термообрабатывают при 200-900°С со скоростью подъема температуры 50-55°С/ч. Термообработанную смесь прессуют при давлении 14-24 МПа с последующим обжигом при 1350-1400°С в течение 50-60 ч, прессованием при давлении 9,0-9,5 ГПа с одновременным нагревом при 1350-1450°С в течение 5-10 мин. Получают люминофор белого цвета свечения, представляющий собой силикат редкоземельных элементов состава Ca2La6,8Eu1,2Si6O26-δ, где 0,07≤δ≤0,12. Изобретение позволяет расширить номенклатуру люминофоров, обеспечивающих чисто белый цвет свечения. 2 н.п. ф-лы, 2 пр.
Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с последующим охлаждением. В качестве соединения титана используют карбид титана при массовом соотношении карбид титана : молибден, равном 8:2. Высокотемпературную обработку осуществляют в потоке низкотемпературной азотной плазмы при температуре плазмы 4000-6000°С мощности плазмотрона 2,4-3,6 кВт/ч и скорости потока плазмы 45-50 м/с. Скорость подачи исходной смеси равна 150-180 м/с. Продукт охлаждают в потоке азота, улавливают на поверхности тканевого фильтра и проводят капсулирование. Изобретение позволяет получить гомогенный нанокристаллический порошок сложного титан-молибденового карбида Ti0,8Mo0,2C со структурой типа NaCl, пригодный для длительного хранения. 2 пр.

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения молибдена при высокой температуре в атмосфере, содержащей инертный газ, с последующей конденсацией при охлаждении, при этом в качестве кислородсодержащего соединения молибдена используют порошок триоксида молибдена, испарение осуществляют в присутствии мочевины, взятой в соотношении триоксид молибдена:мочевина = 1:1, в условиях плазменной переконденсации в низкотемпературной азотной плазме при температуре 4000÷6000°С при мощности плазмотрона 2,4÷3,6 кВт/ч при скорости потока плазмы 50÷55 м/с и скорости подачи порошка 150-200 г/ч, а охлаждение осуществляют в потоке азота с последующим вихревым циклонированием и улавливанием на тканевом фильтре. Изобретение позволяет получать оксикарбид молибдена со структурой типа NaCl без посторонних примесей с размером частиц не более 30 нм экологически безопасным способом. 2 пр., 2 ил.

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий. В способе переработки золы-уноса угольных теплоэлектростанций, включающем высокотемпературную обработку в атмосфере азота, процесс ведут в присутствии мочевины при соотношении зола-унос:мочевина, равном 1:1, а высокотемпературную обработку осуществляют в потоке азотной плазмы при температуре плазмы 4000-6000°С при мощности плазмотрона 25 кВт и скорости потока плазмы 60-100 м/с с последующим охлаждением в атмосфере азота, подаваемого со скоростью 60-80 м/с, и разделением разнодисперсных фракций в условиях вихревого циклонирования и фильтрации на рукавном фильтре. Технический результат – утилизация отходов, расширение ассортимента полезных продуктов, получаемых в результате утилизации золы. 2 ил., 1 пр.

Изобретение относится к области металлургии, в частности к плазмохимическим способам получения нанодисперсных порошков методом переконденсации в низкотемпературной азотной плазме. Способ получения нанодисперсных порошков, плакированных никелем, в потоке низкотемпературной азотной плазмы включает помещение в дозатор поршневого типа порошкообразного исходного реагента и подачу его пневмотоком в камеру испарителя, обработку в камере испарителя низкотемпературной азотной плазмой, охлаждение продукта испарения в потоке азота в водоохлаждаемой закалочной камере, расположенной в нижней части испарителя, и улавливание его с помощью фильтра. В качестве исходного реагента используют смесь карбида или нитрида ванадия и металлического никеля, взятых в следующем соотношении, мас.%: карбид или нитрид ванадия - 50÷75, металлический никель - 25÷50. При этом температура плазмы в камере испарителя равна 4000-6000°С, скорость потока плазмы составляет 50-55 м/с, а исходный реагент вводят со скоростью 150-200 г/ч. Получают гетерогенные нанодисперсные порошки карбида или нитрида ванадия, плакированные никелем, с размером частиц менее 100 нм. 6 ил., 2 пр.

Изобретение относится к химической промышленности и может быть использовано для получения нанопорошков плазмохимическим методом. Композиционный нанопорошок включает частицы, состоящие из ядра, состоящего из слоев карбонитрида титана и нитрида титана, и оболочки, состоящей из слоя никеля, при следующем соотношении слоев ядра и оболочки, мас.%: TiCxNy, где 0,28≤x≤0,70; 0,27≤y≤0,63; - 24-66; TiN0,6 - 30-67; Ni - 4-9. Способ включает подачу прекурсора, содержащего никелид титана и карбид титана, в камеру испарителя-реактора, обработку в потоке азотной плазмы при скорости потока плазмы 60-100 м/сек и при скорости подачи прекурсора 100-140 г/час, последующее охлаждение в потоке азота и улавливание продукта испарения на поверхности фильтра. Прекурсор содержит указанные компоненты при следующем соотношении TiNi:TiC=25-50:50-75. Получается нанокомпозиционный порошок, обеспечивающий получение твердых сплавов более высокой твердости. 2 н.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к порошковой металлургии, в частности к спеченным безвольфрамовым твердым сплавам

Изобретение относится к химической промышленности и может быть использовано для получения наноразмерных порошков плазмохимическим методом

Изобретение относится к области формирования в цифровом виде трехмерного изображения поверхности реального физического объекта, исследуемого методами сканирующей микроскопии

Изобретение относится к области формирования в цифровом виде трехмерного изображения реального физического объекта, а именно к формированию топографического изображения объекта, исследуемого методами сканирующей микроскопии

 


Наверх