Патенты автора Карпачева Галина Петровна (RU)

Изобретение относится к области переработки отходов полиэтилентерефталата (ПЭТФ) в углеродный материал. Предложен способ переработки отходов ПЭТФ, включающий предварительное растворение отхода полиэтилентерефталата в диметилсульфоксиде при температуре 160-180°С, добавление гидроксида щелочного металла и щелочной гидролиз растворенного отхода ПЭТФ при температуре 130-150°С и атмосферном давлении с получением соли терефталевой кислоты с последующим ее пиролизом под действием ИК-излучения в инертной атмосфере при температуре 800-900°С (два варианта, использующих разные гидроксиды щелочного металла). Технический результат – утилизация отходов ПЭТФ с меньшими энергетическими затратами, позволяющая получить пористый углеродный материал с использованием более безопасного растворителя - диметилсульфоксида. 2 н.п. ф-лы, 7 ил., 1 табл., 10 пр.

Настоящее изобретение относится к группе изобретений: нанокомпозитный магнитный материал; способ получения нанокомпозитного магнитного материала. Нанокомпозитный магнитный материал включает полимерную матрицу из полисопряженного полимера, в которой диспергированы кобальт- и железосодержащие магнитные наночастицы. Полимерная матрица содержит полидифениламин-2-карбоновую кислоту (ПДФАК). Магнитные наночастицы представляют собой смесь магнитных наночастиц Co-Fe, γ-Fe, β-Со, Fe3C диаметром 20÷50 нм и диаметром 120÷380 нм. Суммарное содержание в указанном материале магнитных наночастиц 25-63 мас. % и содержание кобальта 5-30 мас. % от массы нанокомпозита Fe3O4/ПДФАК. Данный способ включает получение прекурсора из магнитной жидкости удалением органического растворителя из жидкости при температуре 60-85°С и ИК-нагрева прекурсора в течение 2-10 мин в атмосфере аргона при температуре 700-800°С. Магнитная жидкость представляет собой стабильную суспензию нанокомпозита Fe3O4/ПДФАК со структурой ядро - оболочка на основе полисопряженного полимера и магнитных наночастиц, в которой растворена соль Со (II) при содержании кобальта 5-30 мас. % от массы нанокомпозита Fe3O4/ПДФАК. Технический результат – разработка нанокомпозитного магнитного материала, обладающего высокой намагниченностью насыщения и высокой термостабильностью, который может быть использован для создания контрастирующих материалов для магниторезонансной томографии как материалов, поглощающих электромагнитное излучение, а также в высокотемпературных процессах в качестве защитных покрытий, конструкционных материалов, электрохимических источников тока. 2 н.п. ф-лы, 19 ил., 1 табл., 15 пр.

Настоящее изобретение относится к группе изобретений: полимер-металл-углеродный нанокомпозитный электромагнитный материал, способ получения полимер-металл-углеродного нанокомпозитного электромагнитного материала. Полимер-металл-углеродный нанокомпозитный электромагнитный материал включает полимерную матрицу из полисопряженного полимера, в которой диспергированы кобальт- и железосодержащие магнитные наночастицы (МНЧ), закрепленные на одностенных углеродных нанотрубках (ОУНТ). В качестве полимерной матрицы материал содержит полидифениламин-2-карбоновую кислоту (ПДФАК). В качестве МНЧ - смесь магнитных наночастиц Co-Fe, γ-Fe, β-Со, Fe3C диаметром 20÷65 нм и диаметром 100÷350 нм. Суммарное содержание в указанном материале МНЧ 27-60 масс. % и содержание кобальта 5-30 масс. % от массы нанокомпозита Fe3O4/ОУНТ/ПДФАК, а ОУНТ 1-3 масс. % от массы мономера - дифениламин-2-карбоновой кислоты (ДФАК). Данный способ включает получение прекурсора удалением органического растворителя из магнитной жидкости при температуре 60-85°С и ИК-нагревом прекурсора в течение 2-10 мин в атмосфере аргона при температуре 700-800°С. Магнитная жидкость представляет собой стабильную суспензию нанокомпозита Fe3O4/ОУНТ/ПДФАК со структурой ядро-оболочка на основе полисопряженного полимера и магнитных наночастиц, в которой растворена соль Со (II) при содержании кобальта 5-30 масс. % от массы нанокомпозита Fe3O4/ОУНТ/ПДФАК. Технический результат – создание полимер-металл-углеродного нанокомпозитного электромагнитного материала с суперпарамагнитными свойствами, высокой намагниченностью насыщения, высокой электропроводностью и термостойкостью, который может быть использован в системах магнитной записи информации, медицине, как антистатические покрытия и материалы, поглощающие электромагнитное излучение, для создания датчиков и нанозондов, перезаряжаемых батарей, сенсоров, суперконденсаторов и других электрохимических устройств. 2 н.п. ф-лы, 20 ил., 1 табл., 15 пр.

Изобретение относится к созданию новых гибких гибридных электродов для суперконденсаторов на основе полимеров с системой полисопряжения и может быть использовано при создании портативных устройств хранения энергии. Гибкий электрод для суперконденсатора состоит из токоотводящей подложки из анодированной графитовой фольги, электроактивного композитного покрытия на основе полианилина и углеродного наполнителя - химически активированного в присутствии гидроксида калия при пиролизе инфракрасным излучением полиакрилонитрила ИК-ПАНа графитоподобной слоевой структуры с удельной поверхностью 2000-3000 м2/г, объемом пор 0,3-1,3 см3 и проводимостью 1,5 См/см. Содержание компонентов в электроактивном композитном покрытии, мас.%: ИК-ПАНа - 5-15, полианилин - остальное. Способ получения гибкого электрода для суперконденсатора включает нанесение на проводящую подложку из графитовой фольги электроактивного покрытия путем электрополимеризации анилина из электролита - 3-7 мас.% раствора анилин сульфата в 1М H2SO4. Фольгу предварительно анодируют в 0,1 мас.% (NH4)2SO4 в течение 3-5 мин. В электролите предварительно суспендируют углеродный наполнитель - ИК-ПАНа и обрабатывают полученную суспензию ультразвуком частотой 35 кГц, мощностью 20-50 Вт в течение 20-40 мин. Электрополимеризацию ведут при значениях потенциала от -0.7 до +1 В (относительно Ag/AgCl электрода), предпочтительно в течение 20-50 циклов заряда-разряда. Электрод предпочтительно подвергают предварительной разработке путем циклирования при скоростях развертки потенциала 50-200 мВ/с в течение 500 циклов заряда-разряда. Техническим результатом является повышение электрохимической емкости, кулоновской эффективности, стабильности работы гибкого электрода при длительном проведении циклов заряда-разряда при простоте его получения. 2 н. и 2 з.п. ф-лы, 8 пр., 4 ил.

Изобретение может быть использовано при создании компонентов электронной техники, сенсоров, суперконденсаторов, электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, в системах магнитной записи информации. Способ получения нанокомпозитного магнитного и электропроводящего материала включает совместное растворение в органическом растворителе солей Со (II) и Fe (III) и полимерной матрицы - полифеноксазина (ПФОА), удаление растворителя с формированием прекурсора и его последующий ИК-нагрев. В качестве органического растворителя используют диметилформамид (ДМФА), диметилсульфоксид (ДМСО) или N-метилпирролидон. Совместное растворение проводят одновременно с дополнительным добавлением в раствор одностенных углеродных нанотрубок (ОУНТ). Удаление растворителя осуществляют при 60-85°С. ИК-нагрев проводят в атмосфере аргона при 350-600°С в течение 2-10 мин. При этом получают нанокомпозитный материал, содержащий 5-10 мас.% от массы полимера ОУНТ, на которых закреплены наночастицы Co-Fe при общем содержании их в материале 2-45 мас.%. Изобретение позволяет получить нанокомпозитный материал, обладающий одновременно электропроводящими и суперпарамагнитными свойствами, высокой намагниченностью насыщения, электропроводностью и термостабильностью. 3 з.п. ф-лы, 11 ил., 1 табл., 26 пр.

Изобретение может быть использовано в электронной технике для изготовления электрохимических источников тока, сенсоров, суперконденсаторов и систем магнитной записи информации, в медицине для изготовления электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, при очистке воды в комбинации с магнитным сепарированием, а также при изготовлении антистатических покрытий и материалов, поглощающих электромагнитное излучение в различных диапазонах длины волны. Гибридный нанокомпозитный магнитный и электропроводящий материал включает полимерную матрицу - полидифениламин (ПДФА), одностенные углеродные нанотрубки (ОУНТ), на которых закреплены биметаллические частицы Co-Fe в виде твердого раствора, размером 450-1600 нм. Общее содержание частиц Co-Fe в материале 2-45 масс. %, а ОУНТ - 1-10 % от массы полимера. Для получения указанного материала сначала получают прекурсор совместным растворением ПДФА, ОУНТ и солей железа Fe (III) и кобальта Со (II) в органическом растворителе с последующим удалением растворителя при 60-85°С. Затем проводят ИК-нагрев прекурсора в атмосфере аргона при 400-600°С в течение 2-10 мин. В качестве соли кобальта Со (II) используют Со(ООССН3)2⋅4H2O, Со(СН3СОСН=С(СН3)O)2, CoCO3⋅6H2O или Co(NO3)2⋅6H2O при содержании кобальта 1-15 % от массы полимерной матрицы. В качестве соли железа Fe (III) используют FeCl3⋅6H2O, Fe(NO3)3⋅6H2O или Fe(CH3COCH=C(CH3)O)3 при содержании железа 2-30 % от массы полимерной матрицы. В качестве органического растворителя используют диметилформамид (ДМФА), диметилсульфоксид (ДМСО) или N-метилпирролидон. Гибридный нанокомпозитный материал, обладающий одновременно электропроводящими и суперпарамагнитными свойствами, термостойкостью (термостабильностью) и намагниченностью насыщения, получен простым способом. 2 н. и 3 з.п. ф-лы, 1 табл., 24 пр., 23 ил.

Изобретение относится к области создания новых структурированных гибридных нанокомпозитных магнитных материалов на основе электроактивных полимеров. Гибридный нанокомпозитный магнитный материал включает полимерную матрицу - полидифениламин (ПДФА) и диспергированные в ней металлические наночастицы железа (Fe) и кобальта (Со) при общем содержании наночастиц Co-Fe в материале 2-45 масс. % от массы полимерной матрицы. Способ получения гибридного нанокомпозитного магнитного материала включает ИК-нагрев прекурсора. Прекурсор получают совместным растворением полидифениламина (ПДФА) и солей кобальта и железа в органическом растворителе с последующим удалением растворителя при температуре 60-85°С. ИК-нагрев осуществляют в атмосфере аргона при температуре 400-600°С в течение 2-10 мин. Обеспечивается повышение намагниченности насыщения, термостойкости, упрощение получения гибридного нанокомпозитного магнитного материала. 2 н. и 3 з.п. ф-лы, 18 ил., 1 табл., 23 пр.

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с полимерной мембраной, для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев. Предложен гибридный электропроводящий материал на основе полимера - полидифениламин-2-карбоновой кислоты (поли-N-фенилантраниловой кислоты) и одностенных углеродных нанотрубок (ОУНТ) при содержании ОУНТ в материале 1-3мас.%. Способ его получения включает растворение мономера - дифениламин-2-карбоновой кислоты (ДФАК) в органическом растворителе - хлороформе до концентрации 0.05-0.2 моль/л, добавление к раствору ОУНТ в количестве 1-3 мас.% от массы мономера (ДФАК) и in situ окислительную полимеризацию мономера в щелочной среде в присутствии водного раствора окислителя. Технический результат - повышение электропроводности, прочности, термостойкости нанокомпозитного дисперсного электропроводящего материала при значительном снижении содержания в нем углеродных нанотрубок. 2 н.п. ф-лы, 11 ил., 1 табл., 19 пр.

Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц Fe3O4, закрепленных на углеродных нанотрубках. Нанокомпозитный магнитный материал включает полимер - полидифениламин-2-карбоновую кислоту (ПДФАК) и одностенные углеродные нанотрубки (ОУНТ), на которых закреплены наночастицы Fe3O4 при содержании в материале наночастиц Fe3O4 1-53 масс. % от массы ПДФАК и ОУНТ 1-3 масс. % от массы мономера. В способе получения нанокомпозитного магнитного материала in situ окислительной полимеризацией мономера на поверхности нанокомпозита Fe3O4/ОУНТ в присутствии водного раствора окислителя, в качестве мономера используют дифениламин-2-карбоновую кислоту (ДФАК). Наночастицы Fe3O4 закрепляют на поверхности ОУНТ путем гидролиза смеси солей железа (II) и (III) в мольном соотношении 1:2 в растворе гидроксида аммония в присутствии ОУНТ. Указанный мономер растворяют в смеси органического растворителя - хлороформа и NH4OH, взятых в объемном соотношении 12:1, до концентрации мономера в растворе 0.05-0.2 моль/л и перед окислительной полимеризацией добавляют к раствору наночастицы Fe3O4, закрепленные на поверхности ОУНТ. Нанокомпозитный материал по изобретению обладает одновременно электропроводящими и суперпарамагнитными свойствами, высокой однородностью и термостабильностью и намагниченностью насыщения, а также способностью образовывать стабильные магнитные жидкости, что позволяет эффективно использовать его в органической электронике и электрореологии, для создания датчиков и нанозондов, электрохимических источников тока, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей и других электрохимических устройств. 2 н.п. ф-лы, 1 табл., 12 ил.

Изобретение может быть использовано в системах магнитной записи информации, органической электронике, медицине, при создании ионообменных материалов, компонентов электронной техники, солнечных батарей, дисплеев, перезаряжаемых батарей, сенсоров и биосенсоров. Металлополимерный нанокомпозитный магнитный материал включает полимерную матрицу и диспергированные в ней наночастицы Fe3O4. В качестве полимерной матрицы используют матрицу из поли-3-амино-7-метиламино-2-метилфеназина ПАММФ при содержании наночастиц Fe3O4 в материале 1-70 мас.% от массы ПАММФ. Для получения металлополимерного нанокомпозитного магнитного материала окислительной полимеризацией мономера in situ на поверхности наночастиц Fe3O4 в присутствии водного раствора окислителя в качестве мономера используют 3-амино-7-диметиламино-2-метилфеназин гидрохлорид - нейтральный красный, в качестве окислителя - персульфат аммония. Мольное соотношение окислителя к мономеру при проведении окислительной полимеризации равно 2-5. Перед окислительной полимеризацией мономер растворяют в органическом растворителе, в качестве которого используют ацетонитрил, диметилформамид или диметилсульфоксид, до концентрации 0,01-0,05 моль/л. К раствору добавляют наночастицы Fe3O4 в количестве 1-70 мас.% от массы ПАММФ. Окислительную полимеризацию проводят при 0-60°С в течение 1-6 ч. Изобретение позволяет повысить намагниченность насыщения гибридного металлополимерного нанокомпозитного магнитного материала с супермагнитными свойствами, высокой термостабильностью, упростить его получение, снизить энергозатраты. 2 н.п. ф-лы, 10 ил., 1 табл., 24 пр.

Изобретение относится к области создания электроактивных полимеров - N-замещенных полианилинов (ПАНИ) и гибридных наноматериалов на основе этих полимеров и многостенных углеродных нанотрубок (МУНТ), которые могут быть использованы для получения высокоэффективных электродных материалов для химических источников тока и суперконденсаторов. Электроактивный N-замещенный ПАНИ представляет собой поли-2,5-дианилин-3,6-дихлорбензохинон, в котором боковые заместители являются фениламинобензохиноновыми и сопряжены с основной полианилиновой цепью. Технический результат заключается в создании электроактивных полимеров, стабильно работающих в органических электролитах, характеризующихся выходом на стационарный режим, высокой электрохимической емкостью и высокой кулоновской эффективностью. 6 н.п. ф-лы, 6 ил., 14 пр.

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев, а также лекарств для лечения онкологических заболеваний. Мономер - 3-амино-7-диметиламино-2-метилфеназин гидрохлорид – нейтральный красный, растворяют в органическом растворителе до концентрации 0,01-0,05 моль/л. В полученный раствор добавляют одностенные углеродные нанотрубки (ОУНТ) в количестве 1-10 от массы мономера. Затем проводят окислительную полимеризацию мономера in situ в присутствии водного раствора окислителя. Полученный гибридный электропроводящий материал на основе поли-3-амино-7-метиламино-2-метилфеназина и ОУНТ характеризуется высокой электропроводностью, прочностью, термостойкостью. 2 н.п. ф-лы, 7 ил., 1 табл., 21 пр.

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц Fe3O4, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, модулей памяти, преобразователей энергии, плоских панелей дисплеев, датчиков и нанозондов, электрохимических источников тока, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей и других электрохимических устройств. Описан нанокомпозитный магнитный материал, включающий полимер и наночастицы Fe3O4, отличающийся тем, что материал дополнительно содержит одностенные углеродные нанотрубки ОУНТ, на которых закреплены наночастицы Fe3O4, а в качестве полимера используют поли-3-амино-7-метиламино-2-метилфеназин ПАММФ при содержании в материале наночастиц Fe3O4 1-70 мас. % от массы ПАММФ и ОУНТ 1-10 мас. % от массы мономера. Также описан способ получения нанокомпозитного магнитного материала. Технический результат: получен нанокомпозитный дисперсный магнитный материал, обладающий электропроводящими и супермагнитными свойствами, высокой однородностью, термостабильностью и намагниченностью насыщения. 2 н.п. ф-лы, 1 табл., 15 ил., 30 пр.

Изобретение относится к области создания новых структурированных гибридных металлополимерных нанокомпозиционных материалов на основе электроактивных полимеров с системой полисопряжения и магнитных наночастиц Со и может быть использовано в системах магнитной записи информации, органической электронике и электрореологии, медицине, при создании электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, микроэлектромеханических систем, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, электрокатализаторов, солнечных батарей, дисплеев и других электрохимических устройств. Описаны металлополимерный дисперсный магнитный материал, содержащий полимерную матрицу, в которой диспергированы наночастицы кобальта, в котором полимерная матрица состоит из полифеноксазина при содержании наночастиц кобальта 1÷50 мас. % и способ получения металлополимерного дисперсного магнитного материала путем ИК-нагрева прекурсора, полученного из полимерной матрицы и соли кобальта, в котором для получения материала прекурсор получают совместным растворением полифеноксазина и соли кобальта в органическом растворителе с последующим удалением растворителя при температуре 60-100°С, а ИК-нагрев осуществляют в атмосфере аргона при температуре 200-700°С в течение 2-30 мин. 2 н. и 5 з.п. ф-лы, 1 табл., 13 ил., 23 пр.

Использование: для оценки состава двухкомпонентных твердых растворов в нанодисперсных материалах, включающих, в частности, наноразмерные частицы: Pt-Ru, Pt-Rh, Fe-Co, Pd-Ru, Pd-Rh, Pd-H, Hf-O. Сущность изобретения заключается в том, что предложенный способ определения состава двухкомпонентного твердого раствора включает определение рентгеноструктурным анализом периода решетки твердого раствора и периода решетки чистого растворителя с последующим определением содержания растворенного элемента по его зависимости от периода решетки. Для определения состава твердого раствора в нанодисперсном материале предварительно получают чистый растворитель в наносостоянии способом, которым был получен указанный твердый раствор. Зависимость содержания растворенного элемента в нанодисперсном материале от периода решетки устанавливают путем расчета изменения периодов решеток х по формуле: а0-араст,=х, где а0 - период решетки растворителя в крупнокристаллическом состоянии, араст - период решетки растворителя в наносостоянии, и корректировки зависимости содержания растворенного элемента от периода решетки, установленной для крупнокристаллических материалов, на величину х. Для определения содержания растворенного элемента по установленной зависимости используют разницу периодов решетки твердого раствора и чистого растворителя Δа, которую определяют по формуле: Δa=араст-атр, где атр - период решетки твердого раствора в нанодисперсном материале. Технический результат: обеспечение возможности оценки состава твердых растворов в нанодисперсных материалах. 12 ил., 1 табл., 7 пр.

Способ может быть использован для получения композиционных материалов, лаков и покрытий, обладающих высокими электрофизическими и прочностными характеристиками, которые могут быть использованы для создания электропроводящих и антистатических материалов, защитных экранов от электромагнитного излучения. Получают композитный лак для пленочного материала непосредственно в ходе синтеза полианилина, который проводят путем пограничной полимеризации в среде не смешивающихся между собой растворов - раствора полимерного связующего в органическом растворителе и водного реакционного раствора и последующего удаления водной фазы. Водный реакционный раствор содержит мономер - анилин, окислитель - пероксидисульфат аммония и соляную кислоту. Микрочастицы полианилина в растворе полимерного связующего обладают тонкодисперсной чешуйчатой структурой. Содержание полианилина в полученном композитном лаке предпочтительно составляет 10-25 мас. %. Технический результат - расширение диапазона полимеров, которые могут быть использованы в качестве связующего при применении полимерных электропроводящих частиц, повышение механических свойств и характеристик конечных пленочных материалов при обеспечении высокой электропроводности в одностадийном способе. 1 з.п. ф-лы, 2 ил., 1 табл., 9 пр.

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на другую сторону - слой, содержащий наночастицы сплавов Pt-Ru, Pt-Re, Pt-Rh или Pd-Ru, распределенные в пленке ИК-ПАН. Способ получения катализатора включает нанесение на подложку слоя ПАН из его раствора в органическом растворителе, сушку, облучение ИК светом. Нанесение на другую сторону подложки прекурсора - совместного раствора ПАН и соединений Pt или Pd с Ru или Re, или Rh в соотношении Pt(Pd):Ru(Re,Rh)=(7÷10):1 с введением в раствор мелкодисперсного углеродистого материала. Постадийное облучение ИК-светом при определенной интенсивности на каждой стадии, и охлаждение. Способ дегидрирования углеводородов осуществляют в установке с проточным мембранным реактором, где полученный катализатор разделяет установку на зону дегидрирования и зону, в которую избирательно диффундирует водород. Технический результат - повышение производительности и стабильности катализатора и эффективности дегидрирования. 2 н. и 7 з.п. ф-лы, 1 табл., 11 пр., 1 ил.

Изобретение относится к катализаторам получения алифатических углеводородов из оксида углерода и водорода и их использованию. Описан катализатор для получения алифатических углеводородов из оксида углерода и водорода, содержащий наноразмерные каталитически активные частицы металлического кобальта или железа, причем он получен путем пиролиза макромолекул полиакрилонитрила (ПАН) в присутствии солей железа или кобальта в инертной атмосфере под действием ИК-излучения при температуре 300-700°C после предварительного отжига на воздухе. Описан способ получения алифатических углеводородов из оксида углерода и водорода при повышенной температуре и давлении в присутствии описанного выше катализатора. Технический результат - упрощение процесса получения катализатора и удешевление процесса. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл., 9 пр.

Изобретение относится к области создания новых структурированных нанокомпозитных материалов и может быть использовано, в частности, для получения магнитных жидкостей, изготовления электромагнитных экранов, в качестве контрастирующих препаратов в магниторезонансной томографии

Изобретение относится к способу получения электропроводящего газочувствительного материала для химических сенсоров газа, в частности к способу получения электропроводящего газочувствительного материала для химического сенсора диоксида азота путем ИК-отжига

Изобретение относится к области технологии получения наноструктурированных металл-углеродных композитных материалов и может быть использовано в гетерогенном и электрокатализе
Изобретение относится к области производства катализаторов для химической и нефтехимической промышленности, которые могут быть использованы в процессах дегидрирования и реформинга органических соединений с целью получения водорода, олефинов, циклоолефинов и ароматических соединений

Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН)

 


Наверх