Патенты автора Ефимов Николай Николаевич (RU)

Изобретение относится к области теплоэнергетики, касается комплексной утилизации различных горючих органических отходов, преимущественно твердых бытовых и промышленных, и может быть применено на частных объектах (мало- и многоэтажных домостроениях), а также на объектах практически всех отраслей промышленности, связанных с образованием горючих органических отходов. Индивидуальный автономный утилизатор органических отходов содержит реактор в виде цилиндра, содержащий в нижней части колосниковую решетку, вентилятор, дымовую трубу. Реактор, выполненный в виде цилиндра, имеет суживающуюся нижнюю часть, с расположенным под ней выдвижным коробом для отгрузки золы и первоначального розжига, суживающаяся часть реактора имеет отверстия для подачи воздуха от вентилятора, загрузочное устройство в виде крышки расположено в верхней части реактора, утилизатор теплоты расположен на внешней поверхности дымовой трубы и имеет патрубок для подвода воды и патрубок для отвода подогретой воды, утилизатор вредных веществ расположен в верхней части дымовой трубы и утилизатора теплоты и включает патрубок для подвода чистой воды и патрубок для отвода загрязненной воды. Технический результат заключается в утилизации горючих органических отходов с утилизацией теплоты уходящих газов и их очисткой от вредным примесей. 1 ил.

Изобретение относится к гелиосистемам генерации электроэнергии, предназначено для преобразования солнечной энергии в электроэнергию и может быть использовано в системах электроснабжения. Солнечная электростанция включает солнечные концентраторы, соединенные через масляный насос с теплообменником, к теплообменнику через трубопровод подключена паровая турбина, соединенная с конденсатором, конденсатор соединен с теплообменником через водяной насос, паровая турбина соединена с электрогенератором, подключенным к электролизеру, который последовательно соединен с баком-накопителем водорода, водородным насосом и камерой сгорания, камера сгорания соединена через трехходовой клапан с паровой турбиной и теплообменником, причем солнечные концентраторы выполнены параболоцилиндрической формы. Технический результат заключается в максимальном использовании суточной солнечной инсоляции. 1 ил.

Изобретение относится к теплоэнергетике и может быть использовано в схемах тепловых электрических станций, в том числе для малой распределенной энергетики. Технический результат заключается в значительном повышении эффективности электрических станций путем исключения конденсатора и связанных с ним потерь из цикла электростанции и замены его абсорбером. Технический результат изобретения в части устройства теплоэлектростанции достигается за счет того, что теплоэлектростанция на основе цикла Ренкина содержит: соединенные последовательно котлоагрегат с паровой турбиной и питательным насосом, образующие парожидкостный тракт, соединенный с паровой турбиной электрогенератор, абсорбер с контуром возврата абсорбента, в котлоагрегат встроен генератор пара, абсорбер соединен с генератором пара через питательный насос, генератор пара через охладитель абсорбента и расширительный клапан соединен с абсорбером. Также представлен способ работы теплоэлектростанции. 2 н.п. ф-лы, 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Энергоустановка для утилизации тепловой энергии отработавших газов двигателей внутреннего сгорания содержит турбину (7), жидкоструйный эжектор (6) турбины, конденсатный насос (5), конденсатор (9), электрогенератор (8), редукционный вентиль (12) и контур циркуляции охлаждающей жидкости двигателя (1) внутреннего сгорания. Вход по жидкости жидкоструйного эжектора (6) соединен с выходом высоконапорного конденсатного насоса (5), установленного после конденсатора (9). Электрогенератор (8) установлен на одном валу с турбиной (7), выход которой соединен с входом конденсатора (9), охлаждаемого с помощью вентилятора (10). Контур циркуляции охлаждающей жидкости двигателя (1) внутреннего сгорания включает рубашку (2) охлаждения и циркуляционный насос (3). Имеется рекуперативный теплообменник (4), установленный в рубашку (2) охлаждения таким образом, что вход в его обогревающую часть соединен с выходом рубашки (2) охлаждения, а выход из обогревающей части через циркуляционный насос (3) соединен с входом рубашки (2) охлаждения. Вход по обогреваемой части соединен с выходом высоконапорного конденсатного насоса (5), а выход по обогреваемой части соединен с входом по жидкости жидкоструйного эжектора (6) турбины. Вход по газу жидкоструйного эжектора (6) турбины соединен с выходом отработавших газов из двигателя (1) внутреннего сгорания, а выход соединен с входом турбины (7). Вход конденсатора сообщен с входом по пару жидкоструйного эжектора конденсатора. Вход по конденсату конденсатора (9) соединен через редукционный вентиль (12) с выходом высоконапорного конденсатного насоса (5). Выход жидкоструйного эжектора (11) конденсатора соединен с входом сепаратора (13). Выход по газу сепаратора (13) соединен через трубу (14) с атмосферой, а выход по жидкости соединен с входом высоконапорного конденсатного насоса (5). Технический результат заключается в повышении использования теплоты отработавших газов двигателя. 1 ил.

Группа изобретений относится к области медицины. Способ цементной фиксации полиэтиленового вкладыша в ходе ревизионного эндопротезирования тазобедренного сустава включает сохранение металлического вертлужного компонента и фиксацию нового полиэтиленового вкладыша при помощи цемента. В слой костного цемента в фазе аппликации на вершины условного треугольника укладывают по одному калибровочному спейсеру одинакового диаметра так, чтобы они располагались на середине расстояния между центром и краем вертлужного компонента, после чего полиэтиленовый вкладыш вдавливают в цемент с достижением контакта через спейсеры с вертлужным компонентом и удерживают давление до затвердевания цемента. Калибровочный спейсер для выполнения вышеуказанного способа выполнен из твердого имплантатного материала в виде шарика диаметром 2,0 мм, 2,5 мм или 3,0 мм. Изобретения обеспечивают равномерную толщину цементной мантии и, соответственно, центральную позицию нового полиэтиленового вкладыша в стабильном вертлужном компоненте, что является важнейшими условиями их надежной фиксации. 2 н.п. ф-лы, 5 ил.

Изобретение может быть использовано в системах утилизации тепловой энергии на базе органического цикла Ренкина. Вспомогательная энергетическая установка для дизель-генераторов включает в себя паротурбинный контур, содержащий секции, в каждой из которых имеется турбина, расположенная на одном валу (6) с электрогенератором (7). Вал (6) является общим для всех турбин (5), (18), (29). Каждая турбина (5), (18), (19) соединена с соответствующим котлом-утилизатором (8), (19), (30). Паротурбинный контур разделен на три замкнутые секции. В каждой замкнутой секции циркулирует разное рабочее тело. Каждая замкнутая секция дополнительно содержит конденсатор (9), (20), (31), расположенный после турбины (5), (18), (29), конденсационный насос (10), (21), (32) и систему аварийного охлаждения рабочего тела в паровой фазе. Система аварийного охлаждения состоит из датчиков (11), (22), (33) температуры, расположенных перед турбиной (5), (18), (29) и в секциях котлов-утилизиторов (8), (19), (30), охладителя (12), (23), (34) пара, регулирующего клапана (13), (24), (35), расположенного перед турбиной (5), (18), (29), регулирующего клапана (14), (25), (36), расположенного таким образом, чтобы обеспечить подачу рабочего тела в охладитель (12), (23), (34) пара или в секцию котла-утилизатора (8), (19), (30), бака-накопителя (15), (26), (37) рабочего тела в жидкой фазе, регулирующего клапана (16), (27), (38), расположенного после конденсатора (9), (20), (31), и насоса (17), (28), (39), расположенного после бака-накопителя рабочего тела в жидкой фазе. Имеется система подачи и распределения отходящих газов от дизельного двигателя (1) к секциям котла-утилизатора (8), (19), (30), состоящая из трубопровода (40) для отвода отходящих газов, дымососа (41) и регулирующих клапанов (42), (43), (44). Имеется система водяной обмывки, включающая бак (48) для водяного раствора поверхностно-активных веществ и регулирующие клапаны (49), (50), (51). Имеется система воздушной обдувки наружных поверхностей нагрева секций котла-утилизатора (8), (19), (30), состоящая из теплообменного аппарата (59), воздушного насоса (60), расположенного перед электрогенератором (2) дизель-генератора и регулирующих клапанов (61), (62), (63), (64), (65), (66). Технический результат заключается в повышении КПД и надежности за счет регулирования коэффициента теплопередачи от отходящих газов дизельного двигателя к внешней поверхности теплообмена и периодической очистки внешних поверхностей нагрева котла-утилизатора от продуктов сгорания. 1 ил.

Изобретение относится к теплоэнергетическим устройствам для термической утилизации твердых бытовых и промышленных отходов путем пиролиза и выработки тепловой и электрической энергии. Энергетический комплекс для переработки твердых бытовых отходов содержит реактор, включающий камеру пиролиза и камеру дожигания, а также котел-утилизатор, конденсатор, конденсатный и питательный насосы, рукавный фильтр очистки газа от пыли и дымосос. Реактор оборудован горелкой розжига топлива, причем сверху относительно реактора размещено загрузочное шлюзовое устройство, а под реактором размещено выгрузочное шлюзовое устройство. Вход котла-утилизатора газопроводом соединен с реактором, а выходы, соответственно, соединены газопроводом с очистителем от твердых компонентов и паропроводом с паровой турбиной, вал ротора которой с помощью муфты соединен с валом ротора электрогенератора. Конденсатор включает теплообменник, соединенный с теплосетью. Конденсатный насос трубопроводом соединен с баком питательной воды, к которому подключено устройство химводоочистки. Питательный насос соединен с котлом-утилизатором. Рукавный фильтр очистки газа от пыли соединен газопроводом с очистителем от твердых компонентов. Дымосос связан газопроводом с дымовой трубой. Изобретение позволяет упростить комплекс для переработки твердых бытовых отходов, а также обеспечить выработку тепловой и электрической энергии при снижении экологической нагрузки на окружающую среду. 1 ил.

Изобретение относится к области энергетики и предназначено для одновременного производства тепла и электроэнергии при помощи когенерационных установок с двигателем внутреннего сгорания. Когенерационная установка с глубокой утилизацией тепловой энергии двигателя внутреннего сгорания содержит электрогенератор, соединенный приводом с ДВС, систему преобразования утилизированного тепла ДВС в электрическую энергию, состоящую из соединенных последовательно по ходу движения теплоносителя трехходового клапана через I ход с паровой турбиной, связанной с электрогенератором, конденсатором и конденсационным насосом, систему утилизации отходящего тепла ДВС, включающую систему утилизации теплоты газовыхлопа ДВС, состоящую из магистрали уходящих газов, связывающей теплообменник-турбокомпрессор с парогенератором-утилизатором теплоты уходящих газов, и систему охлаждения ДВС, которая включает холодный контур, имеющий последовательно соединенные в замкнутый контур гидролинией, оснащенной электронагревательными элементами, водомасляный теплообменник, теплообменник надувочного воздуха, циркуляционный насос, теплообменник-утилизатор тепла холодного контура системы охлаждения ДВС и горячий контур, имеющий последовательно соединенные гидролинией в замкнутый контур теплообменник-утилизатор тепла горячего контура, циркуляционный насос, соединенный гидролинией, оснащенной электронагревательными элементами, с теплообменником - зарубашечным пространством блока цилиндров и крышками цилиндров ДВС и гидролинией с теплообменником-турбокомпрессором и замкнутый подконтур горячего контура системы охлаждения ДВС, включающий последовательно соединенные гидролинией вентиль, теплообменник-калорифер, циркуляционный насос и теплообменник - зарубашечное пространство блока цилиндров и крышек цилиндров ДВС, при этом система преобразования утилизированного тепла в электрическую энергию дополнительно содержит соединенные последовательно по ходу движения теплоносителя накопительный резервуар, питательный насос и фильтр, связанный гидролинией с теплообменниками-утилизаторами тепла холодного и горячего контуров системы охлаждения ДВС, а II ход трехходового клапана гидролинией связан с питательным насосом, причем клапан ограничения давления подключен гидролинией между выходом питательного насоса и входом в накопительный резервуар. Технический результат изобретения заключается в повышении эффективности работы установки при высокой надежности и простоте конструкции в условиях различных эксплуатационных режимов. Когенерационная установка обеспечивает за счет глубокой утилизации тепла в летние месяцы при выработке только электрической энергии, использования двухконтурной системы охлаждения ДВС необходимые температурные режимы работы головки и блока цилиндров ДВС, снижение количества дорогостоящих турбин с электрогенератором и конденсатора до одной штуки. 1 ил.

Изобретение относится к экспериментальной медицине и может быть использовано для моделирования дефектов костной ткани для изучения рефиксации мягких тканей к пористым титановым имплантатам с использованием аддитивных технологий. Формируют продольный костный дефект в области проксимального метаэпифиза голени медиальнее от места прикрепления собственной связки надколенника. Имплантируют в него титановый пористый имплантат, позволяющий выполнить к нему фиксацию сухожильной ткани. Волокна собственной связки надколенника расслаивают и формируют из них две порции, фиксируют их к возвышающемуся над поверхностью кости титановому имплантату рассасывающимся шовным материалом. Способ обеспечивает возможность наиболее достоверной оценки процессов интеграции сухожильных, связочных и костных структур в титановые имплантаты. 4 ил.

Изобретение относится к экспериментальной медицине и может быть применимо для моделирования дефектов мышечной ткани для изучения рефиксации мышц к пористым титановым имплантатам с использованием аддитивных технологий. Формируют мышечный дефект в толще волокон широчайшей мышцы спины кролика. Имплантируют в него титановый сетчатый имплантат. Фиксируют к нему мышечные волокна по всей его поверхности, обеспечивая их максимальный контакт. Способ обеспечивает возможность наиболее достоверной оценки процессов интеграции мышечной ткани в титановые имплантаты. 4 ил.

Активная паровая турбина сверхкритических параметров, включающая корпус, крышки корпуса со втулками, имеющими концевые лабиринтные уплотнения, ротор, установленный в радиальный и сдвоенный радиально-упорный подшипник и состоящий из вала, на котором закреплены рабочие колеса первой, второй и третей ступеней, сопловой аппарат первой ступени, образованный из равномерно расположенных по окружности сопел на передней крышке корпуса, закрепленные в корпусе неподвижные диафрагмы второй и третьей ступеней с кольцевыми проточками промежуточного лабиринтного уплотнения на внутреннем диаметре, а внешние диаметры представляют собой венцы, состоящие из сопел, образующие совместно с распорными втулками сопловые аппараты второй и третьей ступени, трубную разводку и паровыпускной отвод. Сопла, имеющиеся в сопловых аппаратах первой, второй и третей ступеней турбины, представляют собой сопла Лаваля, равномерно расположенные по окружностям напротив лопаток активных рабочих решеток. Сопла Лаваля, вмонтированные в переднюю крышку турбины и равномерно расположенные по окружности напротив лопаток активной рабочей решетки первой ступени, состоят из двух частей, в основной из которых изготовлен канал профиля сопла Лаваля, а вспомогательная часть представляет собой плоскую крышку, которая при сборке с первой образует недостающую сторону канала сопла. Технический результат состоит в упрощении конструкции и уменьшении габаритов и массы турбины, достигнутый в результате переработки высокого теплоперепада, характерного для сверхкритических параметров парогазовой смеси, в ограниченном (минимальном) количестве активных ступеней турбины. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и может быть использовано при планировании и выполнении операций первичного и ревизионного эндопротезирования тазобедренного сустава с использованием трехмерных моделей костей таза и вертлужного компонента. Формируют трехмерные модели костей таза пациента и серийного вертлужного компонента с планированием их оптимального взаимопозиционирования. На краю модели вертлужного компонента отмечают ориентир, а на его полусфере позиционируют отверстия для проведения фиксирующих винтов. Через центры указанных отверстий проводят оси, на которых формируют конусы, соответствующие допустимым отклонениям проводимых винтов, с вершинами, находящимися в точках пересечения осей с наружным краем полусферы. Затем совмещают полученную модель вертлужного компонента с моделью таза и задают необходимые расположение центра ротации головки эндопртеза и углы фронтальной инклинации и антеверсии. Выполняют удаление костной ткани в объеме, необходимом для установки вертлужного компонента эндопротеза. Далее вращают модель вертлужного компонента вокруг оси полусферы и, не меняя углы фронтальной инклинации и антеверсии компонента, подбирают необходимое количество винтов, их длину, направления и отверстия для их проведения, на модели костей таза отмечают края вертлужного компонента с ориентиром. Формируют туннели, соответствующие направлению введения винтов, после чего методом трехмерной печати из стерилизуемого материала воспроизводят фрагмент полученной модели костей таза, которую используют во время операции для достижения запланированной позиции вертлужного компонента и проведения винтов согласно ранее определенным параметрам. Способ позволяет произвести оптимальное позиционирование вертлужного компонента относительно костей таза в максимальной площади контакта резьбовой поверхности винтов с костной тканью, а также уменьшить вероятность повреждения сосудов и нервов винтами за счет создания трехмерной модели и использования трехмерного графического редактора. 9 ил., 1 пр.

Изобретение относится к области электротехники и может быть использовано для защиты электрических двигателей от тепловых перегрузок. Техническим результатом является повышение точности порога срабатывания защиты. Способ защиты электрического двигателя от технологических перегрузок, состоящий в том, что фиксируют ток двигателя, преобразуют его в величину и производят отключение двигателя, за критерий опасного режима принимают мгновенное значение температуры нагрева мощностью независимо от формы тока, фиксируют мгновенное значение тока перегрузки, проходящего через двигатель, и мгновенное значение напряжения на двигателе, перемножают их и величину, пропорциональную получившейся в результате перемножения мощности, рассеиваемой в двигателе и греющей его, подают на элементы, воссоздающие экспоненциальные зависимости, соответствующие кривым нагрева различных условных участков структуры защищаемого двигателя, причем параметры элементов получают путем разложения экспериментально снятой кривой нагрева наиболее опасного в тепловом отношении участка физической структуры защищаемого двигателя на составляющие ее экспоненты, а параметры на выходе указанных элементов складывают, получая параметр, пропорциональный мгновенному значению температуры перегрева наиболее опасного участка физической структуры двигателя относительно окружающей среды, который складывают со значением параметра, пропорционального температуре окружающей среды, а получающуюся в результате суммирования величину, пропорциональную мгновенному значению температуры нагрева наиболее опасного участка физической структуры двигателя, сравнивают с температурой уставки срабатывания защиты, а результат сравнения преобразуют в соответствующие электрические сигналы, с помощью которых производят защитное отключение двигателя. Устройство защиты двигателя от перегрузки состоит из датчика тока (1), двигателя (6), подключенного к преобразователю (3), который преобразует в предлагаемом устройстве мощность, рассеиваемую в двигателе (6), в величину, пропорциональную мгновенному значению температуры опасного участка структуры защищаемого двигателя (6). К входу преобразователя (3) подключен также датчик напряжения на двигателе (2). Выход преобразователя (3) подключен через контакты (4) к контактору (5), предназначенному для защитного отключения двигателя (6). 2 н.п. ф-лы, 2 ил.

Изобретение относится к теплоэнергетике, кроме того, изобретение может быть использовано на предприятиях химической промышленности для получения синтез-газа, метана, аммония, жидких моторных топлив и других ценных химических продуктов и соединений. Способ заключается в том, что пылевидное топливо газифицируют в потоке окислителя и водяного пара при атмосферном давлении, генераторный газ отводят из камеры газификации, при этом пылевидное топливо смешивают с окислителем и паром внутри камеры газификации, в качестве окислителя используют воздух, активированный нанокатализаторами, в качестве нанокатализаторов используют астралены и таунит, внедряют в процесс газификации синглетный кислород, сгенерированный путем облучения наноматериала, подают пылевидное топливо в газификатор по схеме противотока относительно восходящего струйно-вихревого потока окислителя, поток окислителя с водяным паром закручивают с помощью лопастного аппарата, а золу удаляют в сухом виде. Техническим результатом является повышение эффективности процесса газификации и коэффициента использования топлива за счет интенсификации процесса газификации. 1 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано в автономных энергетических установках малой электрической мощности (до 100 кВт). Высокооборотный турбогенератор с паровым приводом малой мощности состоит из проточной части, включающей рабочее колесо турбины с установленными на нем лопатками, соплового аппарата турбины, электрогенератора. Турбогенератор содержит спаренный подшипник турбины, установленный в корпусе неподвижно, и подшипник электрогенератора, установленный в корпусе подвижно. Турбогенератор содержит комбинированную систему охлаждения, состоящую из рубашки жидкостного охлаждения статора, выполненной в виде спиральных каналов, и воздушной системы охлаждения статора и ротора электрогенератора. Достигается снижение сил трения в подшипниках вала турбогенератора на начальном этапе запуска, фиксация в обе стороны осевого смещения вала турбогенератора, повышение эффективности охлаждения, повышение надежности работы подшипников, повышение КПД турбогенератора и надежности электрогенератора. 3 з.п. ф-лы, 8 ил.

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электрических станциях. Способ интенсификации процесса сжигания низкореакционного угля в котлах ТЭС включает воспламенение и горение пылеугольного низкореакционного топлива, при вводе в процесс горения водной эмульсии с нанодобавкой в виде растворимого таунита. Техническим результатом является увеличение динамики процесса горения и полноты выгорания угля в котлах ТЭС. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на микротурбинных установках малой мощности, от 5 до 40 кВт электрической мощности и от 20 до 270 кВт тепловой. Конденсатор состоит из основного и внутреннего корпусов, кольцевой распределительной решетки, трубных поверхностей охлаждения конденсата, коллекторов подвода и отвода охлаждающей воды. Коллекторы подвода и отвода охлаждающей воды выполнены в виде труб большего диаметра, чем трубные поверхности охлаждения конденсата. Трубные поверхности охлаждения конденсата выполнены в виде спирально накрученных трубок-змеевиков, закручиваемых к центру в одной горизонтальной плоскости и раскручиваемых в другой горизонтальной плоскости. Технический результат: высокая теплообменная способность, простота изготовления и сборки. 1 ил.

Изобретение относится к газовой промышленности и может быть использовано для крепления призабойной зоны пескопроявляющих газовых скважин, в том числе используемых для подземного хранения газа. Способ крепления призабойной зоны пласта с неустойчивыми породами включает создание фильтра путем приготовления и закачки отверждающегося полимерного состава в призабойную зону. При этом перед и после указанным составом закачивается растворитель, объем которого составляет 10-30% об. от полимерного состава. После чего скважину продувают потоком газа и производят выдержку на реагирование и отверждение состава. Причем качестве отверждающегося полимерного состава используется смесь кремнийорганической смолы и растворителя Химеко-П - 95,0-98 мас.%: отвердитель АГМ-9 - 5,0-2,0 мас.%, представляющий собой аминопропилтриэтоксисилан. В качестве растворителя используется ксилол или смесь кубовых остатков ректификации КОРЭ 0,0-100 мас.% и 100,0-0,0 мас.% ароматического растворителя Нефрас А. Техническим результатом является повышение эффективности способа. 1 ил., 1 табл.
Изобретение относится к нефтегазодобывающей промышленности, в частности к ремонту и креплению скважин, и может быть использовано при ремонтно-изоляционных работах в скважинах для изоляции посторонних вод и газопереточных каналов в цементном кольце за эксплуатационной колонной. Технический результат - расширение номенклатуры высокотехнологичных тампонажных растворов с повышенной проникающей способностью и ультранизкой водоотдачей, предназначенных для ремонтно-изоляционных работ. Тампонажный раствор содержит, мас.ч. на 100 мас.ч. микроцемента ЦС БТРУО «Микро»: понизитель фильтрации «ПФ-ВМЦ» 0,25-0,75, замедлитель схватывания «ЗС-ВМЦ» 0,50-3,00, микрокремнезем МК-85 0,00-10,00, пеногаситель 0,10-0,30, вода пресная 70,0-80,0. 2 табл., 1 пр.

Изобретение относится к строительству скважин различного назначения, к ремонтно-изоляционным работам в скважинах, а также используется при ликвидации водопроявлений в процессе бурения скважин. Технический результат - снижение фильтратоотдачи, повышение седиментационной устойчивости. Тампонажный состав, содержащий вяжущее и углеводородную жидкость модифицированную ПАВ, отличающийся тем, что в качестве углеводородной жидкости модифицированной ПАВ применяется углеводородная жидкость «ДС БТРУО», а в качестве вяжущего содержит портландцементные тампонажные смеси: цементная смесь БТРУО «Стандарт» с удельной поверхностью не менее 300,0 м2/кг; цементная смесь БТРУО «Медиум» с удельной поверхностью не менее 500,0 м2/кг; цементная смесь БТРУО «Микро» с удельной поверхностью не менее 900,0 м2/кг, соответственно, дополнительно содержит поверхностно-активное вещество «ПАВ БТРУО», маслорастворимый полимер, в качестве которого используют 20% растворы полиизобутилена в углеводородном растворителе: ПИБ 15 или ПИБ 20, или ПИБ 30 и тонко дисперсный кремнесодержащий наполнитель, в качестве которого используются микрокремнезем или опока молотая, или диатомит молотый при следующем соотношении компонентов, масс.%: вяжущее: цементная смесь БТРУО «Стандарт», или БТРУО «Медиум», или БТРУО «Микро» 59,0÷71,0, поверхностно-активное вещество «ПАВ БТРУО» 0,2÷0,5, маслорастворимый полимер - 20% растворы полиизобутилена в углеводородном растворителе: ПИБ 15, или ПИБ 20, или ПИБ 30 1,0÷10,0, тонкодисперсный кремнесодержащий наполнитель: микрокремнезем, или опока молотая, или диатомит молотый 1,0÷7,0, углеводородная жидкость «ДС БТРУО» остальное. 2 табл.

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электрических станциях для повышения эффективности сжигания низкореакционного твердого топлива

Изобретение относится к теплоэнергетике и может быть использовано на тепловых и атомных электрических станциях для повышения эффективности работы паровой турбинной установки ее оборудования и всей электростанции
Изобретение относится к области ресурсосберегающих технологий, а именно к технологии шлакоситаллов, используемых в строительной, химической промышленности

Изобретение относится к гидроэнергетическому строительству

Изобретение относится к области энергетики и химической промышленности и может применяться для производства синтез-газа из угля
Изобретение относится к нефтегазодобывающей промышленности, в частности к изоляции пластовых вод в высокотемпературных нефтяных и газовых скважинах с пластовой температурой 100°С и выше
Изобретение относится к строительству скважин различного назначения и, в частности, к ремонтно-изоляционным работам в скважинах и/или при ликвидации водопроявлений в процессе бурения скважин
Изобретение относится к нефтегазодобывающей промышленности, в частности к области бурения, эксплуатации и ремонта скважин, и может быть использовано при бурении и глушении скважин, характеризующихся наличием неустойчивых, подверженных гидратации горных пород, солевых отложений, сероводородных агрессий и высоких забойных температур

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам глушения и консервации скважин, к способам приготовления и применения жидкостей для гидравлического разрыва пласта, а также может использоваться для ограничения водопритоков в нефтяные и газовые скважины

 


Наверх