Патенты автора Ахметов Равиль Нургалиевич (RU)

Изобретение относится к области космической техники, а более конкретно к дистанционному зондированию Земли. Ракетно-космическая система (РКС) высокодетального дистанционного зондирования Земли в видимом и/или инфракрасном диапазоне наблюдения включает ракету-носитель для доставки на орбиту выведения космических аппаратов (КА), имеющих плоскость крепления к РН, перпендикулярную продольной оси КА, и размещенных в системе крепления и отделения от РН. КА имеют в своем составе оптико-электронную аппаратуру наблюдения, корректирующую двигательную установку и средства разворота КА относительно его центра инерции. Система крепления и отделения выполнена в виде адаптера. На адаптере размещены несколько устройств отделения с установленными на них КА, продольные оси которых параллельны продольной оси РН. На адаптере между КА закреплены стойки, связанные с платформой, на которой зафиксировано устройство отделения КА. КА снабжены запасом топлива, обеспечивающим перевод КА после отделения от РН с орбиты выведения на рабочую орбиту с минимальной высотой Н. Максимальный поперечный размер КА не превышает 0,6 диаметра D зоны полезного груза РН. Максимальная высота КА не превышает D, размер апертуры оптико-электронной аппаратуры d может находиться в пределах от 0,11 D до 0,25 D. 4 ил.

Изобретение относится к способу управления космическим аппаратом (КА). Для управления КА в процессе его эксплуатации реализуют различные режимы изменения его параметров и бортовых систем. Управление КА осуществляют с помощью бортовой вычислительной системы (БВС), используя командно-управляющую информацию, передаваемую из наземного комплекса управления (НКУ). Осуществляют постоянный контроль БВС определенным образом. При обнаружении неработоспособности БВС ее исключают из контура управления КА, включают резервный контур управления для восстановления работоспособности КА. После восстановления работоспособности КА переводят в штатный режим работы. Обеспечивается повышение живучести КА, предотвращение развития аварийных ситуаций. 1 ил.

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ компенсации оптических аберраций с использованием деформируемого зеркала предусматривает измерение аберраций волнового фронта и преобразование результатов этих измерений в набор команд для активной/адаптивной оптической системы, включающей элемент в виде управляемого деформируемого зеркала и исполнительные механизмы, предназначенные для деформирования управляемого деформируемого зеркала. Команды для исполнительных механизмов обеспечивают создание на отражающей поверхности деформируемого зеркала перемещений, соответствующих требуемой для компенсации аберраций волнового фронта суперпозиции собственных форм колебаний имитатора зеркала, имеющего такую же геометрическую форму и такие же упругие свойства, как само деформируемое зеркало, но обладающего нулевой плотностью и закрепленными в местах подсоединения исполнительных механизмов единичными сосредоточенными массами, учитываемыми только в направлении приложения усилий от исполнительных механизмов. Технический результат – устранение искажений при перемещениях, повышение точности компенсации аберраций волнового фронта. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к ракетно-космической технике и может быть использовано в ракетных блоках (РБ). Универсальный водородно-кислородный ракетный модуль (РМ) содержит топливные баки горючего и окислителя, межбаковый отсек с нишами и разделяемым узлом, ферменный межступенчатый отсек с теплозащитным отражателем и съемной пылевлагозащитной оболочкой, сопряженный с ракетой-носителем (РН), кислородно-водородные двигатели (КВД) с входными штуцерами подачи азота, средства продувки КВД азотом, трубопроводы, разъемные соединения, приборы служебных систем, системы управления и радиосистем РКН, узлы крепления, пневмогидравлическую систему с агрегатами и управляющими клапанами для взаимодействия с агрегатом связи бортового и наземного оборудования, герметичные корпуса, защитные устройства, баллоны бортового наддува гелием топливного бака окислителя с выходными патрубками, фланцевые соединения, узлы герметизации, заборные устройства, съемные трубопроводы наземного газоанализатора. Топливные баки горючего и окислителя выполнены одного диаметра с высотами в зависимости от суммарного импульса тяги ракетного блока и типа РН. Изобретение позволяет сократить объём наземных испытаний РБ и исключить стендовые наземные испытания РБ, унифицировать РМ для разных типов РБ. 4 ил.

Изобретение относится к области космических телескопов (КТ) и может быть использовано для различных ферменных и корпусных конструкций, к которым предъявляются высокие требования по геометрической стабильности размеров от действия температур. Задачей настоящего изобретения является устранение указанных недостатков, то есть снижение веса, упрощение технологии изготовления, уменьшение стоимости изготовления с обеспечением стабильности продольных и поперечных линейных размеров фермы силовой КТ в неравномерном поле температур без увеличения дефокусировки КТ. Задача решается тем, что ферма силовая КТ состоит из продольных, поперечных и диагональных цилиндрических размеростабильных при действии температур стержней, соединенных между собой в узлах пересечения, при этом продольные, поперечные и диагональные стержни выполнены составными, соединенными между собой торовой эллиптической оболочкой по большей оси, при этом торовая эллиптическая оболочка заполнена термометрической жидкостью, причем геометрические размеры каждого из составных цилиндрических стержней, торовой эллиптической оболочки, характеристики применяемых материалов и физические свойства термометрической жидкости связаны соотношением: L = η 4,26 ⋅ b ( β − 3 α 1 ) ( 0,06 a 4 + R 1 2 ⋅ δ 1 2 ) α 2 ( 1 − μ 2 ) R 1 2 ⋅ δ 1 2 где L - суммарная длина любого из составных стержней; b, a - малая и большая полуоси сечения торовой эллиптической оболочки; R1 - радиус срединной поверхности торовой эллиптической оболочки; δ1 - толщина торовой эллиптической оболочки; α1, α2 - коэффициенты линейного расширения материала торовой эллиптической оболочки и стержня соответственно; β - коэффициент объемного расширения термометрической жидкости; µ - коэффициент Пуассона материала торовой эллиптической оболочки; η - коэффициент, учитывающий упругость торовой оболочки в местах ее соединения с цилиндрическими стержнями. 5 ил.

Изобретение относится к конструкции космического аппарата (КЛ) и его бортовым, главным образом, терморегулирующим системам. КЛ конструктивно объединяет модули целевой аппаратуры и служебных систем и снабжен термостабилизирующим кожухом, выполненным в виде прямоугольного параллелепипеда. На боковых его сторонах закреплены трехслойные сотовые термопанели (ТП) с металлическими обшивками, между которыми встроены тепловые трубы (ТТ). На оболочке кожуха выполнен канал для жидкого теплоносителя с шагом, равным шагу расположения ТТ. Теплоноситель имеет тепловой и механический контакт с соответствующими ТТ. Протяженность канала, длина ТТ и шаг между ТТ выбраны так, чтобы перепады температуры кожуха вдоль двух взаимно перпендикулярных направлений не превышали допустимых. Одна из ТП стенок кожуха, в виде пятислойной сотовой панели, обеспечивает механический контакт модулей целевой аппаратуры и служебных систем. На внешних обшивках этой ТП уложены трубопроводы гидромагистрали. Другая торцевая ТП выполнена в виде металлической пластины с отверстиями под крышки целевой аппаратуры. Каждое отверстие соосно оптической оси соответствующей аппаратуры. На внутренней поверхности торцевой ТП расположены трубопроводы гидромагистрали. Внутри кожуха вдоль продольной оси КА параллельно боковым стенкам закреплена размерно-стабильная несущая конструкция (например, из углепластика) для целевой аппаратуры. Обеспечивающие приборы модуля целевой аппаратуры установлены на верхней торцевой стенке кожуха. Кожух с внешней стороны изолирован от космического пространства экранно-вакуумной теплоизоляцией. Техническим результатом изобретения является повышение качества, в т.ч. точности получаемой КА целевой информации при сохранении его ресурсных характеристик. 4 ил.

Изобретение относится к области ракетной техники и может быть использовано при разработке ракет-носителей

Изобретение относится к области оптического приборостроения и может быть использовано при создании различных ферменных и рамных конструкций, к которым предъявляются высокие требования по жесткости и геометрической стабильности размеров от действия температур

Изобретение относится к ракетно-космической технике и предназначено для использования в конструкции ракет-носителей

Изобретение относится к космической технике и может использоваться как транспортное космическое средство для доставки полезного груза с поверхности Земли на орбиту

Изобретение относится к космической технике, в частности для использования в составе транспортных космических систем

 


Наверх