Патенты автора Небольсин Валерий Александрович (RU)

Изобретение относится к технологии получения полупроводниковых материалов. Cпособ выращивания нитевидных нанокристаллов (ННК) SiO2 включает подготовку монокристаллической кремниевой пластины путем нанесения на ее поверхность мелкодисперсных частиц металла-катализатора с последующим помещением в ростовую печь, нагревом и осаждением кремния из газовой фазы, содержащей SiCl4, Н2 и O2, по схеме пар→жидкая капля→кристалл с одновременным его окислением, при этом катализатор выбирают из ряда металлов, имеющих количественные значения логарифма упругости диссоциации для реакции образования оксида , где Me - металл, О - кислород, n и m - индексы, при 1000 K, более -36,1, причем частицы металла-катализатора выбирают с диаметрами менее 100 нм, а температуру процесса выращивания устанавливают в интервале 1000-1300 K. 5 пр.

Изобретение относится к технологии получения полупроводниковых материалов для создания автоэмиссионных электронных приборов (с «холодной эмиссией электронов) для изготовления зондов и кантилеверов сканирующих зондовых микроскопов и оперативных запоминающих устройств с высокой плотностью записи информации, поверхностно-развитых электродов электрохимических ячеек источников тока, а также для использования в технологиях изготовления кремниевых солнечных элементов нового поколения для повышения эффективности антиотражающей поверхности фотопреобразователей. Способ выращивания острийных нитевидных кристаллов кремния включает подготовку кремниевой пластины путем нанесения на ее поверхность пленки катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар → жидкая капля → кристалл, при этом катализатор выбирают из металлов, образующих с кремнием фазовую диаграмму с вырожденной эвтектикой, причем молярное отношение компонентов газовой фазы поддерживают в интервале 0,01≤n≤0,025. Далее на подложку наносят пленку катализатора не более 2 мкм, а осаждение кристаллизуемого вещества ведут до полного израсходования катализатора. Изобретение позволяет получать острийные нанокристаллы кремния с ультратонкой вершиной (с радиусом кривизны поверхности вблизи вершины менее 50 нм), что обеспечивает их высокую функциональную способность, а относительно толстое основание – хорошую механическую прочность при больших циклических нагрузках и вибрации. 1 ил., 5 пр.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ получения нитевидных нанокристаллов Si (ННК) включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар → капельная жидкость → кристалл, при этом перед нанесением частиц катализатора и помещением подложки в ростовую печь на пластину Si наносят пленку Ti и анодируют длительностью от 5 до 90 мин в 1%-ном растворе NH4F в этиленгликоле, причем плотность анодного тока поддерживают в интервале от 5 до 20 мА/см2, а наночастицы катализатора на анодированную поверхность Ti наносят осаждением металла, выбираемого из ряда Ni, Ag, Pd, из 0,1 М раствора, имеющего общую формулу Me(NO3)x, где Me - Ni, Ag, Pd; х=1-2, в течение 1-2 мин при воздействии на раствор ультразвуком мощностью 60 Вт. Изобретение обеспечивает возможность получения ННК с диаметрами от 10 до 100 нм, равномерно распределенных по поверхности подложки и имеющих малый разбаланс поперечных размеров. 6 пр.
Изобретение относится к технологии получения полупроводниковых наноматериалов путем выращивания легированных нитевидных нанокристаллов кремния на кремниевых подложках по схеме пар→жидкая капля→кристалл (ПЖК). Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением в ростовую печь, нагревом, осаждением кристаллизуемого вещества из газовой фазы, содержащей прекурсор SiCl4 и легирующее соединение РСl3, поступающие из жидкостного источника, и выращиванием кристаллов на начальной, основной и конечной стадиях роста, при этом выращивание кристаллов ведут последовательно из двух жидкостных источников, причем количественное значение молярного отношения [PCl3]/[SiCl4], равное m в первом источнике, используемом на начальной и конечной стадиях роста, выбирают из интервала m, большего или равного 0,01, количественное значение молярного отношения [PCl3]/[SiCl4] во втором источнике, используемом на основной стадии роста, устанавливают как m, равное 0. Изобретение обеспечивает возможность получения легированных нитевидных нанокристаллов Si, имеющих повышенный уровень легирования на начальном и конечном участках кристалла (структуры n--n-n-) и позволяющих создавать мезоскопические электрические соединения проводников с линейными вольт-амперными характеристиками. 5 пр.
Изобретение относится к полупроводниковой технике, а именно к области создания микроструктурных элементов электронных устройств. Способ получения отверстий в монокристаллических пластинах кремния включает подготовку полупроводниковой пластины путем нанесения на ее поверхность мелкодисперсных металлических частиц катализатора с последующим покрытием их тонкой пленкой тетрабората натрия (безводного), помещение пластины в радиационную печь, ее нагрев, создание в пластине поперечного, направленного от лицевой к тыльной стороне пластины градиента температуры в диапазоне от 10 до 100 К/см, создание недосыщения атомарного кремния в газовой фазе за счет подачи в нее тетрахлорида кремния и химическое газофазное травление пластины по схеме кристалл→жидкая капля→пар. Изобретение обеспечивает получение сквозных, проходящих через всю толщину отверстий в монокристаллических пластинах кремния. 5 пр.
Изобретение может быть использовано при изготовлении сорбентов и армирующих добавок. Сначала подготавливают ростовую подложку путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора, находящегося под воздействием ультразвука. Во время конденсации дополнительно воздействуют ультразвуком на ростовую подложку при мощности ультразвукового генератора 25-40 Вт. Подготовленную подложку помещают в ростовую печь, подают в реакционную зону ацетилен и выращивают на подложке массивы углеродных нанотрубок, поверхностная плотность которых растёт с увеличением мощности ультразвукового генератора, воздействующего на подложку. 3 пр.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ получения массивов наноразмерных нитевидных кристаллов кремния включает подготовку ростовой кремниевой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора и помещением подготовленной пластины в ростовую печь с последующим выращиванием нитевидных нанокристаллов, при этом на коллоидный раствор воздействуют ультразвуком, причем мощность ультразвукового генератора задают в пределах от 30 до 55 Вт, а температуру раствора поддерживают в интервале от 273 K до 370 K. Изобретение обеспечивает возможность получения на поверхности подложки массивов нитевидных нанокристаллов кремния с управляемой поверхностной плотностью без применения высокотехнологичного оборудования. 3 пр.
Изобретение относится к технологии получения полупроводниковых материалов и предназначено для управляемого выращивания нитевидных кристаллов полупроводников. Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением подготовленной пластины в ростовую печь, нагревом и созданием в пластине продольного температурного градиента 10-100°C/см, далее осуществляют осаждение кристаллизуемого вещества из паровой фазы по схеме пар→капельная жидкость→кристалл, молярное соотношение компонентов газовой фазы к водороду устанавливают в интервале 0,005-0,015, а перепад температуры по диаметру капли катализатора обеспечивают в диапазоне 0,15-0,4°C. Использование изобретения позволит облегчить создание планарных термометрических и тензометрических датчиков, интегрировать нитевидные кристаллы в планарные технологии изготовления микросхем. 6 пр.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, при этом перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин с подсветкой галогенной лампы в смеси 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см2, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм. Изобретение обеспечивает возможность получения тонких полупроводниковых нитевидных нанокристаллов диаметром менее 10 нм, равномерно распределенных по поверхности подложки и имеющих высокую поверхностную плотность. 7 пр.

Изобретение относится к полупроводниковой технике, а именно к фотоэлектрическим преобразователям (ФП) для прямого преобразования солнечной энергии в электрическую энергию. Область применения - возобновляемые источники энергии. Согласно изобретению в полупроводниковом ФП, состоящем из монокристаллических кремниевых пластин с вертикально расположенными на поверхности нитевидными кристаллами, полученными методами глубокого плазмохимического травления и имеющими диффузионные коаксиальные р-n переходы, проходящие через свободные от нитевидных кристаллов участки поверхности подложки и соединенные между собой в единую горизонтальную конструкцию металлическими прокладками, с токовыводящими контактами, со светоприемной поверхностью с диэлектрическим просветляющим покрытием. Нитевидные кристаллы выполнены в виде правильных прямых призм, высота которых превышает оптическую глубину поглощения солнечного излучения в кремнии, а длина ребра основания не превышает диффузионной длины неосновных носителей заряда в кремниевой микроструктуре. Также предложен способ изготовления ФП. Техническим результатом изобретения является повышение КПД ФП путем уменьшения рекомбинационных потерь за счет сокращения пути транспорта неравновесных носителей заряда и отсутствия примесных центров с глубокими энергетическими уровнями. 2 н. и 1 з.п. ф-лы, 5 ил.
Изобретение относится к способу извлечения свинца из отходов аккумуляторных батарей. Способ включает электролитическое осаждение свинца из щелочных растворов на асимметричном импульсном токе с варьированием периодической последовательности пакетов положительных n+ и отрицательных n- импульсов тока, причем количество импульсов в пакете выбирают из n+=20 и интервала 1≤n-≤10. Обеспечивается повышение степени извлечения свинца из щелочных растворов, снижение экономических затрат, экологическая безопасность и возможность безотходного производства. 4 пр.
Изобретение относится к технологии получения полупроводниковых наноматериалов

Изобретение относится к области электроники, в частности к устройству отвода теплоты от кристалла полупроводниковой микросхемы, и может быть использовано для охлаждения кристаллов процессоров и полупроводниковых микросхем, выделяющих при работе тепловую энергию
Изобретение относится к технологии получения полупроводниковых наноматериалов и предназначено для управляемого выращивания наноразмерных нитевидных кристаллов кремния

Изобретение относится к измерительной технике, а именно к устройствам для контроля экспоненциальных вольт-амперных характеристик (ВАХ), и может быть использовано для регистрации коэффициента неидеальности полупроводниковых изделий (ППИ), т.е

 


Наверх