Патенты автора Сафонов Сергей Сергеевич (RU)

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают петрофизическую модель породы пласта-коллектора. Измеряют теплопроводность образца. Используя созданную петрофизическую модель пласта-коллектора, рассчитывают теплопроводность образца породы. Сравнивают измеренную и рассчитанную теплопроводности образца породы и в случае совпадения значений измеренной и рассчитанной теплопроводностей определяют механические свойства породы, используя созданную петрофизическую модель пласта-коллектора. В случае наличия расхождения между значениями измеренной и рассчитанной тепловодности, по меньшей мере один раз осуществляют адаптацию созданной петрофизической модели пласта-коллектора путем изменения параметров модели. Используют адаптированную петрофизическую модель для расчета теплопроводности образца породы и сравнивают измеренную и рассчитанную теплопроводности до обеспечения совпадения значений измеренной и рассчитанной теплопроводностей. При совпадении значений измеренной и рассчитанной теплопроводностей определяют механические свойства породы, используя адаптированную петрофизическую модель пласта-коллектора. Достигается повышение эффективности и качества оценки свойств пласта за счет обеспечения возможности расчета значений неизвестных или не полностью известных механических и/или вмещающих свойств резервуара. 14 з.п. ф-лы, 7 ил.,1 табл.

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В процессе перемещения осуществляют нагрев поверхности образца с периодическим изменением плотности мощности нагрева и измеряют амплитуду деформации поверхности образца материала в результате нагрева. По результатам измерений с учетом плотности и объемной теплоемкости образца рассчитывают значение температурного коэффициента линейного расширения. Устройство для осуществления способа содержит платформу для размещения образца, источник нагрева, выполненный с возможностью изменения плотности мощности нагрева, по меньшей мере один датчик амплитуды деформации поверхности образца и систему взаимного перемещения образца, источника нагрева и датчиков амплитуды деформации поверхности. Технический результат – повышение точности и производительности определения температурного коэффициента линейного расширения неоднородных материалов при нестационарном нагреве поверхности их образцов с одновременным получением данных об упругих и тепловых свойствах образцов в рамках того же измерения. 2 н. и 30 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе. Техническим результатом, достигаемым при реализации изобретения, является расширение функциональных возможностей датчика и повышение эффективности измерений. Скважинный датчик, предназначенный для измерения параметров потока флюида, содержит два идентичных полых открытых с одного конца металлических корпуса, оси симметрии которых находится на одной линии. Открытые концы корпусов обращены друг к другу и жестко закреплены в электрическом изоляторе. В каждом корпусе расположен датчик термоанемометра. Электрические выводы датчиков проходят внутри полостей корпусов и через электрический изолятор выведены наружу. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области исследования свойств пористых материалов, в частности к методам определения величины смачиваемости и распределения пор по размерам

Изобретение относится к области исследования поверхностных свойств, в частности к определению смачиваемости пористых материалов, и может найти применение в различных отраслях промышленности, например в нефтегазовой, химической, лакокрасочной и пищевой

Изобретение относится к области изучения свойств горных массивов и протекающих в них процессов путем измерений в скважинах, а именно получению информации о горных массивах путем измерений температуры в скважинах

Изобретение относится к геофизическим исследованиям скважин (ГИС), а именно к способам исследования продуктивных пластов методом скважинного каротажа при температурном воздействии на пласт

Изобретение относится к области исследования поверхностных свойств флюида (жидкости), в частности к определению межфазного натяжения и угла смачивания жидкости в пористой среде, и может найти применение в различных отраслях промышленности, например, в химической, нефтегазовой, лакокрасочной и пищевой

Изобретение относится к области теплофизических исследований
Изобретение относится к области геологии газовых гидратов и может быть использовано для определения содержания равновесной с газовым гидратом поровой воды в различных дисперсных средах (в том числе в породах, осадочных отложениях и в грунтовых системах)

Изобретение относится к области геологии, геохимии, нефтепереработке и нефтехимии, а именно к определению содержания парафинов и асфальтенов в нефти, и может быть особенно полезно для анализа тяжелых нефтей и битумов

 


Наверх