Патенты автора Никитов Сергей Аполлонович (RU)

Изобретение относится к области измерительной техники и касается детектора терагерцовых колебаний. Детектор содержит прозрачную для излучения подложку, одна поверхность которой открыта для приема излучения, а на другой размещена гетероструктура на основе последовательно расположенных слоя антиферромагнитного материала, первого слоя немагнитного металла, а также приемные электроды. Дополнительно введен второй слой немагнитного металла, размещенный между подложкой и слоем антиферромагнитного материала. Антиферромагнитный материал представляет собой одноосный проводящий металлический антиферромагнетик с легкой осью анизотропии и снабжен токоподводами для пропускания постоянного электрического тока в плоскости слоя для перестройки частоты детектора. Приемные электроды размещены на поверхности первого слоя немагнитного металла и ориентированы перпендикулярно направлению тока по слою антиферромагнитного материала. Технический результат заключается в обеспечении возможности перестройки частоты детектора. 2 з.п. ф-лы, 4 ил.

Использование: для детектирования колебаний в диапазоне частот 0,1-5 ТГц. Сущность изобретения заключается в том, что детектор терагерцовых колебаний содержит гетероструктуру на основе последовательно расположенных на подложке слоев антиферромагнетика и немагнитного металла и приемных электродов, связанных с регистратором, при этом гетероструктура выполнена на прозрачной для терагерцового излучения подложке, антиферромагнетик представляет собой одноосный антиферромагнитный изолятор с легкой осью анизотропии, который нанесен на подложку в виде штыревой гребенчатой структуры, при этом гетероструктура включает средство для перестройки рабочей частоты, выполненное в виде источника постоянного магнитного поля, вектор напряженности которого направлен параллельно легкой оси антиферромагнитного материала. Технический результат: расширение функциональных возможностей регулирования параметров детектора посредством перестройки частоты постоянным магнитным полем, увеличение значения выпрямленного напряжения при резонансе. 4 з.п. ф-лы, 5 ил.

Использование: для построения высоконадежных помехоустойчивых телекоммуникационных систем. Сущность изобретения заключается в том, что мажоритарный элемент на спиновых волнах содержит структуру, выполненную в виде пластины из диэлектрика, с нанесенным на одну сторону слоем магнитоактивной среды, на котором сформированы входные и выходной преобразователи спиновых волн, источник постоянного магнитного поля, размещенный в зоне нахождения структуры. Входные преобразователи спиновых волн размещены в вершинах воображаемого прямоугольника, образованного на поверхности слоя магнитоактивной среды, выходной преобразователь спиновых волн расположен в месте пересечения диагоналей указанного прямоугольника, при этом направление вектора Н источника магнитного поля совпадает с длиной указанного прямоугольника, а входные преобразователи спиновых волн имеют ориентацию относительно направления вектора Н источника магнитного поля, выбранную из условия возбуждения ограниченных по ширине пучков спиновых волн. Технический результат: обеспечение возможности существенной миниатюризации мажоритарного элемента без усложнения технологии его изготовления. 5 з.п. ф-лы, 5 ил.

Изобретение относится к радиотехнике, в частности к фильтрам. Фильтр содержит немагнитную подложку, на поверхности которой образована структура, имеющая канавки в форме меандра, продольная ось которых перпендикулярна направлению распространения магнитостатических волн (МСВ), покрытая ферромагнитной пленкой из железоиттриевого граната, и микрополосковые преобразователи для возбуждения и приема МСВ в ферромагнитной пленке, источник магнитного поля. Подложка выполнена из пьезокерамического материала и имеет протяженный прямолинейный участок в форме бруска и V-образное расширение на конце, при этом преобразователь для возбуждения МСВ размещен со стороны прямолинейного участка, а два преобразователя для приема МСВ - на расширенном участке с возможностью ответвления и мультиплексирования входного сигнала, причем канавки в форме меандра размещены на прямолинейном участке со стороны преобразователя для возбуждения МСВ, магнитное поле источника магнитного поля ориентировано параллельно упомянутым продольным осям канавок, а электроды для приложения к подложке управляющего электрического поля размещены на боковых гранях бруска с возможностью пьезомагнитного взаимодействия в структуре для изменения положения и создания дополнительной запрещенной зоны в спектре МСВ. Технический результат - расширение функциональных возможностей элемента. 1 з.п. ф-лы, 3 ил.

Изобретение относится к прикладной физике и может быть использовано в измерительной технике для генерации и приема излучения в диапазоне частот 0.1-5 ТГц. Осциллятор для генератора терагерцового излучения включает гетероструктуру на основе слоев антиферромагнитного диэлектрика и платины, образованную на подложке, источник для пропускания постоянного тока по слою платины. Антиферромагнитный диэлектрик выбран из числа веществ, обладающих магнитоупругими свойствами, гетероструктура содержит средство для наведения и регулирования полей магнитной анизотропии в антиферромагнитном диэлектрике, выполненное в виде пьезоэлектрического элемента с двумя электродами для подключения к независимому источнику напряжения. Первый электрод размещен на внешней поверхности пьезоэлектрического элемента, а другим электродом является упомянутый слой платины, при этом трудная ось магнитной анизотропии антиферромагнитного диэлектрика лежит в плоскости гетероструктуры. Изобретение направлено на решение проблемы создания осциллятора для генератора терагерцового излучения, параметры которого могут регулироваться посредством двух независимых управляющих величин: электрического тока и упругой деформации посредством пьезоэлемента, управляемого электрическим потенциалом. 2 з.п. ф-лы, 6 ил.

Изобретение относится к фильтрам. Фильтр содержит подложку из немагнитного диэлектрика в форме меандра, образованного совокупностью периодических канавок, продольная ось которых перпендикулярна направлению распространения ПМСВ, слои железоиттриевого граната, нанесенные на подложку, микрополосковые преобразователи для возбуждения и приема ПМСВ, источник постоянного магнитного поля. На подложке, в одной плоскости, размещены две линии периодических канавок одинаковой конфигурации с разной шириной, покрытые слоем железоиттриевого граната и разделенные по длине зазором, в средней части каждой из линий по направлению распространения ПМСВ образована зона, свободная от канавок, высота которой совпадает с высотой выступов канавок, а длина удовлетворяет условию резонанса Фабри-Перо для ПМСВ, при этом микрополосковые преобразователи для возбуждения и приема ПМСВ размещены по обе стороны от указанных зон, а магнитное поле источника магнитного поля ориентировано перпендикулярно плоскости подложки. Технический результат - возможность пространственно-частотной фильтрации СВЧ сигнала, расширение функциональных возможностей управления модовым составом, а также равномерное и пакетное управление выходными портами и режимами работы устройства при изменении частоты входного сигнала. 3 з.п. ф-лы, 8 ил.

Изобретение относится к радиотехнике СВЧ. Технический результат – обеспечение возможности управления режимами функционирования управляемого мультиплексора на магнитостатических волнах как путем изменения частоты входного сигнала, так и изменения параметров внешнего магнитного поля. Устройство содержит размещенную на подложке структуру, содержащую линейные микроволноводы из пленки ЖИГ, микрополосковые антенны для возбуждения и приема магнитостатических спиновых волн (МСВ), источник управляющего магнитного поля, при этом первый и второй микроволноводы размещены параллельно друг другу с зазором в плоскости подложки, третий и четвертый микроволноводы расположены поверх них через слой немагнитного диэлектрика. Толщины упомянутых зазора и слоя выбраны из условия возбуждения в микроволноводах поверхностных МСВ (ПМСВ) и обеспечения режима многомодовой связи между микроволноводами. Входная антенна для возбуждения ПМСВ размещена на одном конце первого микроволновода, на другом его конце - выходная антенна для приема ПМСВ, причем другие выходные антенны для приема ПМСВ размещены на концах второго, третьего и четвертого микроволноводов со стороны размещения выходной антенны первого микроволновода, при этом магнитное поле источника управляющего магнитного поля направлено в плоскости структуры. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники СВЧ и касается оптически управляемого переключателя. Переключатель содержит управляющий источник света и волноводную структуру. Волноводная структура выполнена из пленки железо-иттриевого граната, расположенной на подложке галлий-гадолиниевого граната, и имеет антенны. Пленка волноводной структуры выполнена подковообразной с внутренним радиусом скругления, равным ее ширине. Управляющий источник света расположен таким образом, чтобы направление излучения было ориентировано перпендикулярно области скругления пленки. Антенны расположены на поверхности пленки железо-иттриевого граната вблизи ее краев. Длина антенны кратна ширине плёнки. Технический результат заключается в обеспечении возможности управления распространением магнитостатической волны при изменении ориентации внешнего магнитного поля и изменении величины намагниченности. 3 з.п. ф-лы, 7 ил.

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность вертикальной передачи сигналов в многослойных устройствах с управляемым коэффициентом передачи, в том числе в интегральных магнонных схемах. Технический результат заключается в осуществлении возможности регулирования характеристик распространения магнитостатических волн в широком диапазоне частот в многопортовом режиме. Технический результат достигается тем, что направленный ответвитель на магнитостатических волнах, содержащий основной микроволновод из пленки железо-иттриевого граната, размещенной на подложке из галлий-гадолиниевого граната, микрополосковую антенну для возбуждения магнитостатических волн, расположенную на одном из торцевых концов плёнки железо-иттриевого граната основного микроволновода, согласно изобретению, он содержит дополнительные микроволноводы, каждый из которых выполнен в виде плёнки железо-иттриевого граната, размещенной на подложке из галлий-гадолиниевого граната, а также содержит микрополосковые антенны для приёма магнитостатических волн, при этом дополнительные мкироволноводы размещены на основном микроволноводе перпендикулярно его поверхности, а каждая из антенн для приема магнитостатических волн расположена на торцевом конце каждой плёнки железо-иттриевого граната дополнительных микроволноводов. Ширина пленки железо-иттриевого граната дополнительных микроволноводов составляет от 50 до 500 мкм, толщина пленки - от 1 до 10 мкм, а расстояние (зазор) между дополнительными микроволноводами составляет от 10 до 50 мкм, длина плёнки железо-иттриевого граната основного микроволновода составляет от 100 до 500 мкм. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области контрольно-измерительной техники и предназначено для одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур в сверхвысокочастотном диапазоне, и может найти применение для неразрушающего контроля электрофизических параметров производимых диэлектрических подложек и структур для устройств СВЧ-электроники. Технический результат заключается в расширении функциональных возможностей одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур, применяемых в качестве диэлектрического наполнения сверхвысокочастотных коаксиальных кабелей. Изобретение представляет собой способ определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур, включающий размещение диэлектрической структуры в области нарушения периодичности СВЧ фотонного кристалла, облучение фотонного кристалла, содержащего измеряемую диэлектрическую структуру, электромагнитным излучением сверхвысокочастотного диапазона, измерение частотных зависимостей коэффициентов прохождения и отражения в запрещенной зоне в окрестности дефектной моды, расчет с помощью ЭВМ искомых значений, при которых теоретические частотные зависимости коэффициентов отражения и прохождения электромагнитного излучения наиболее близки к измеренным, при этом, в качестве фотонного кристалла используют коаксиальный сверхвысокочастотный фотонный кристалл, представляющий собой последовательно соединенные отрезки коаксиальной линии передачи, пространство между внешним и внутренним проводником каждого отрезка полностью заполнено диэлектриком, при этом относительная диэлектрическая проницаемость диэлектрического заполнения периодически изменяется вдоль направления распространения электромагнитной волны, подбирают значения длин и относительных диэлектрических проницаемостей диэлектрических заполнений чередующихся отрезков коаксиальной линии передачи таким образом, чтобы обеспечить кратность их электрических длин, приводящую к формированию фотонных запрещенных зон равной глубины на частотных зависимостях коэффициентов прохождения электромагнитного излучения, нарушение периодичности СВЧ фотонного кристалла создают в центральном отрезке коаксиального фотонного кристалла, что приводит к формированию дефектных мод в нескольких фотонных запрещенных зонах, рассчитывают распределение поля электромагнитной волны внутри коаксиального фотонного кристалла вдоль направления распространения электромагнитной волны на частотах, соответствующих дефектным модам в фотонных запрещенных зонах, фиксируют узлы и пучности стоячей электромагнитной волны внутри коаксиального фотонного кристалла, выбирают дефектную моду, на частоте которой в области расположения диэлектрической структуры в центральном отрезке коаксиального фотонного кристалла наблюдается пучность стоячей волны. 2 з.п. ф-лы, 1 табл., 11 ил.

Изобретение относится к радиотехнике, в частности к делителям сигналов. Делитель мощности СВЧ сигнала на магнитостатических волнах содержит размещенную на подложке микроволноводную структуру на основе пленки железо-иттриевого граната (ЖИГ), входной и два выходных порта, связанных с микрополосковыми антеннами для возбуждения и приема магнитостатических волн в микроволноводной структуре, источник управляющего магнитного поля. Микроволноводная структура выполнена в виде Т-образного разветвления, основание которого связано с микрополосковой антенной входного порта, а боковые плечи - с микрополосковыми антеннами выходных портов. На участках между разветвлением и микрополосковыми антеннами выходных портов размещены средства для обеспечения пьезомагнитного взаимодействия в пленке ЖИГ, выполненные в виде пленки пьезоэлектрика с электродами, подключенными к источнику электрического поля, а управляющее магнитное поле направлено по касательной к пленке ЖИГ. Технический результат - придание делителю мощности на МСВ функций фильтрации СВЧ сигнала при обеспечении возможности управления частотными характеристиками посредством магнитных и электрических полей, независимых от мощности входного сигнала. 1 з.п. ф-лы, 5 ил.

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах. Технический результат заключается в создании мультиплексора ввода-вывода с возможностью управления режимами работы устройства за счет изменения конфигурации распределения внутреннего магнитного поля при вариации величины и направления внешнего магнитного поля. Мультиплексор ввода-вывода содержит размещенную на подложке структуру, содержащую два линейных микроволновода из пленки железо-иттриевого граната (ЖИГ) с микрополосковыми антеннами на концах для возбуждения и приема магнитостатических спиновых волн (МСВ), и кольцевой резонатор МСВ, размещенный с зазором между микроволноводами с возможностью обеспечения многомодовой связи, источник управляющего магнитного поля. Резонатор поверхностных МСВ выполнен из пленки ЖИГ в виде прямоугольного замкнутого контура, смежные ребра которого параллельны линейным микроволноводам, а ширина контура равна ширине микроволноводов, причем магнитное поле источника управляющего магнитного поля направлено в плоскости структуры. 1 з.п. ф-лы, 7 ил.

Изобретение относится к радиотехнике, в частности к фильтрам. Многоканальный фильтр СВЧ-сигнала содержит размещенную на подложке ферромагнитную пленочную структуру, сопряженную с входным и выходными преобразователями поверхностных магнитостатических волн (ПМСВ), источники управляющего внешнего магнитного поля. Структура образована пленкой железо-иттриевого граната (ЖИГ) и имеет форму прямоугольника, на коротких гранях которого вдоль длинной оси в теле пленки ЖИГ выполнены симметрично две локальные разделительные дорожки с образованием четырех площадок для размещения преобразователей поверхностных магнитостатических волн. Между концами разделительных дорожек по линии длинной оси прямоугольника образован магнонный кристалл, представляющий собой совокупность отверстий в пленке, размещенных с одинаковым периодом, выбранным из условия образования брэгговской запрещенной зоны в диапазоне волновых чисел от 100 см-1 до 300 см-1. Технический результат - возможность управления режимом работы многоканального фильтра на основе магнонного кристалла путем изменения направления внешнего поля. 3 з.п. ф-лы, 5 ил.

Использование: для пространственного разделения СВЧ-сигналов разного уровня мощности. Сущность изобретения заключается в том, что устройство на магнитостатических волнах включает микроволноводную структуру, содержащую слой железо-иттриевого граната (ЖИГ) на подложке из галлий-гадолиниевого граната, микрополосковые антенны для возбуждения и приема магнитостатических волн (МСВ), связанные с входным и выходными портами СВЧ-сигнала, внешний источник магнитного поля, при этом микроволноводная структура выполнена в виде первого и второго слоев ЖИГ, размещенных в параллельных плоскостях, причем длина первого слоя в направлении распространения МСВ больше длины второго слоя, а сами слои отделены друг от друга немагнитной диэлектрической прослойкой; на смежных поверхностях слоев ЖИГ выполнена периодическая система канавок с глубиной, много меньшей толщины слоя ЖИГ, а длина второго слоя выбрана из условия , мкм, где F - расстояние, на котором СВЧ-сигнал из первого слоя ЖИГ полностью перекачивается во второй слой ЖИГ, мкм; n=1, 3, 5 …, при этом антенна для возбуждения МСВ, связанная с входным портом, и одна из трех антенн для приема МСВ, связанная с первым выходным портом, размещены на первом слое ЖИГ, а две другие антенны, связанные с вторым и третьим выходными портами, размещены на втором слое ЖИГ, причем для возбуждения поверхностных МСВ магнитное поле внешнего источника направлено касательно плоскости структуры, а для возбуждения прямых объемных МСВ - перпендикулярно ей. Технический результат - пространственное разделение СВЧ-сигналов разного уровня мощности на три выхода, с функциями выделения сигналов в определенном диапазоне мощностей, ограничения мощности и шумоподавления. 5 з.п. ф-лы, 7 ил.

Использование: для конструирования приборов на магнитостатических волнах. Сущность изобретения заключается в том, что функциональный компонент магноники содержит подложку из немагнитного диэлектрика, ферромагнитные слои железоиттриевого граната (ЖИГ), микрополосковые преобразователи для возбуждения и приема магнитостатических спиновых волн (МСВ), источник магнитного поля, при этом выполнен в виде многослойной 3D структуры, включающей внешний и внутренний ферромагнитные слои, отделенные друг от друга прослойкой немагнитного вещества и расположенные один над другим, поверхность подложки в сечении имеет форму меандра, образованного совокупностью периодических канавок, продольная ось которых перпендикулярна направлению распространения МСВ, внешний и внутренний ферромагнитные слои имеют период, совпадающий с периодом образованных канавками на поверхности подложки выступов, боковых граней и пазов, а магнитное поле источника магнитного поля ориентировано перпендикулярно к плоскости подложки с возможностью возбуждения в обоих ферромагнитных слоях объемных МСВ. Технический результат: обеспечение возможности многомодового режима распространения МСВ и возможности приема прямых и обратных объемных МСВ. 9 з.п. ф-лы, 2 ил.

Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот. Функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ), микрополосковые преобразователи для возбуждения и приема магнитостатических спиновых волн (МСВ) в пленке ЖИГ, источник магнитного поля. На поверхности подложки, прилежащей к пленке ЖИГ, образована структура в форме меандра из канавок, продольная ось которых перпендикулярна направлению распространения МСВ. Пленка ЖИГ повторяет контур образованных канавками выступов, боковых граней и пазов, а магнитное поле источника магнитного поля ориентировано перпендикулярно к плоскости подложки с возможностью возбуждения в пленке ЖИГ объемных МСВ. Технический результат – расширение функциональных возможностей элемента, обеспечение возможности соединения между собой магнонных элементов в многослойные трехмерные структуры. 6 з.п. ф-лы, 2 ил.

Изобретение относится к логическим элементам на магнитостатических волнах. Технический результат - создание логического устройства типа инвертор/повторитель на поверхностных магнитостатических волнах с возможностью управления режимами работы. Для этого предложен логический элемент, который содержит входной и выходной порты, управляющий порт. Элементы электромагнитной связи на магнитостатических волнах выполнены в виде микроволноводной структуры, содержащей три микроволновода равной ширины, два из которых размещены непосредственно на подложке параллельно друг другу, а третий микроволновод размещен параллельно и симметрично упомянутым двум микроволноводам. Микроволноводы представляют собой удлиненные полоски равной толщины из пленки железо-иттриевого граната на подложке из галлий-гадолиниевого граната. Входной, выходной и управляющий порты образованы микрополосковыми антеннами для возбуждения и приема магнитостатических волн. Входной и выходной порты расположены на концах одной из размещенных на подложке полосок, а управляющий порт - на конце полоски третьего микроволновода со стороны входного порта. 3 з.п.ф-лы, 5 ил.

Изобретение относится к радиотехнике, в частности к приборам СВЧ на магнитостатических волнах, и может быть использовано в качестве демультиплексора. Демультиплексор содержит подложку, с размещенными на ней первым и вторым протяженными микроволноводами из железоиттриевого граната, входную микрополосковую антенну, первую и вторую выходные микрополосковые антенны, источники магнитного поля, связанные со средствами управления. Устройство также содержит третью выходную микрополосковую антенну. Причем первый микроволновод размещен непосредственно на подложке и выполнен с возможностью возбуждения поверхностной магнитостатической волны, а входная и первая выходная антенны размещены на противолежащих концах первого микроволновода. Второй микроволновод закреплен над первым микроволноводом перпендикулярно последнему и установлен с перекрытием их центральных частей с зазором, обеспечивающим возможность перекачки поверхностной магнитостатической волны из первого микроволновода во второй. Вторая и третья выходные антенны размещены на противолежащих концах второго микроволновода с возможностью приема обратнообъемной магнитостатической волны. Технический результат заключается в возможности управления частотным диапазоном и шириной полосы частот демультиплексора посредством воздействия статическим магнитным полем. 2 з.п. ф-лы, 5 ил.

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве фазовращателя. Устройство содержит, размещенный на подложке микроволновод из пленки железоиттриевого граната (ЖИГ), имеющий раздвоенную среднюю часть, размещенные на сплошных частях микроволновода входной и выходной преобразователи магнитостатических волн, элементы управления, источник внешнего магнитного поля. При этом раздвоенная часть микроволновода выполнена в виде интерферометра Маха-Цендера, входной и выходной преобразователи магнитостатических волн в виде микрополосковых антенн размещены на оконечностях сплошных частей микроволновода, внешнее магнитное поле направлено по касательной к пленке из ЖИГ, а элементы управления выполнены в виде средств изменения намагниченности указанной пленки ЖИГ путем локального ее нагрева на раздвоенных частях микроволновода. Технический результат заключается в возможности управления частотным диапазоном и шириной полосы частот фазовращателя посредством воздействия статическим магнитным полем и локальным нагревом микроволновода лазерным излучением при уменьшении размеров (до микроразмерной области) и в упрощении конструкции. 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике. Ответвитель СВЧ сигнала на магнитостатических волнах содержит подложку из галлий-гадолиниевого граната с размещенными на ней с зазором двумя микроволноводами в форме параллельных удлиненных полосок равной ширины из пленок железо-иттриевого граната (ЖИГ). Также содержит антенну для возбуждения магнитостатических волн и антенны для приема магнитостатических волн, размещенные на противоположных концах обоих микроволноводов. Элементы управления содержат источник постоянного магнитного поля, выполненный с возможностью изменения величины и полярности магнитного поля, и магниточувствительный элемент для изменения связи между микроволноводами, выполненный в виде площадки из сплошной металлической пленки, размещенной поверх полосок из ЖИГ и перекрывающей обе полоски и зазор между ними. Площадка находится в магнитной связи с упомянутым источником магнитного поля, а размер площадки по длине составляет не менее 0,5 от длины полосок. Технический результат - управление частотным диапазоном деления и шириной полосы частот посредством изменения параметров внешнего магнитного поля. 3 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного делителя мощности с нелинейным эффектом. Делитель мощности СВЧ сигнала содержит единый входной порт, первый и второй выходные порты. Элементы электромагнитной связи выполнены в виде микроволноводной структуры для магнитостатических волн на подложке из галлий-гадолиниевого граната. Микроволноводная структура выполнена на основе пленки железо-иттриевого граната (ЖИГ) в форме двух удлиненных полосок равной ширины, размещенных параллельно друг другу с зазором, выбранным из условия обеспечения режима многомодовой связи магнитостатических волн. Концы одной полоски микроволноводной структуры имеют отводы, на которых образованы микрополосковые антенны для возбуждения и приема магнитостатических волн, связанные соответственно с единым входным портом и первым выходным портом. Свободный конец другой полоски размещен с торцевым зазором в направлении единого входного порта, а ее второй конец имеет отвод, на котором образована микрополосковая антенна для приема магнитостатических волн, связанная со вторым выходным портом. Изобретение направлено на расширение функциональных возможностей двухканального микроволнового делителя мощности СВЧ сигнала с управлением частотным диапазоном деления и шириной полосы частот делителя посредством изменения мощности подаваемого сигнала. 5 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотного фильтра. Сущность изобретения заключается в том, что частотный фильтр СВЧ сигнала на магнитостатических волнах содержит магнитный элемент, представляющий собой магнонный кристалл, имеющий форму протяженного прямоугольника с заостренными по продольной оси торцами и периодическими геометрическими неоднородностями в форме треугольных элементов, период треугольных элементов выбран из условия образования брэгговской запрещенной зоны в диапазоне волновых чисел от 100 см-1 до 300 см-1, пьезоэлектрический элемент, имеющий длину меньше длины магнитного элемента, наружный электрод пьезоэлектрического элемента, выполненный сплошным, а электрод, прилегающий к поверхности магнитного элемента, имеет форму встречно-штыревого преобразователя с периодом Т, выбранным из условия Т=2Р, где Р - период треугольных элементов. Технический результат – создание частотного фильтра СВЧ сигнала с управлением частотным диапазоном фильтра и шириной полосы частот, уменьшение размеров до микроразмерной области и упрощение конструкции. 5 з.п. ф-лы, 5 ил.

Использование: для измерений с использованием СВЧ техники. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, нечетные элементы фотонного кристалла выполнены в виде прямоугольных металлических резонансных диафрагм с прямоугольными отверстиями, длинные стороны которых параллельны широкой стенке волновода, полностью перекрывающими волновод по поперечному сечению, четные элементы фотонного кристалла представляют собой отрезки прямоугольного волновода между диафрагмами, причем две диафрагмы являются крайними элементами фотонного кристалла, а одна центральной, при этом СВЧ фотонный кристалл дополнительно содержит согласованную нагрузку, соединенную с одним концом фотонного кристалла, Y-циркулятор, один из выходов которого соединен с противоположным концом фотонного кристалла, источник постоянного напряжения, в отверстии центральной диафрагмы размещена, по крайней мере, одна n–i–p–i–n диодная структура, n-области которой гальванически соединены с длинными сторонами отверстия заземленной диафрагмы, p-область n–i–p–i–n диодной структуры соединена с положительным полюсом источника постоянного напряжения, размеры отверстий резонансных диафрагм, кроме центральной диафрагмы, составляют: длина a0=20⋅a/23 и ширина b0=b/5, толщина диафрагм составляет 0,0005⋅b<d<0,003⋅b, длина четных элементов L составляет 1,8⋅b<L<2,5⋅b, при этом a и b – размеры широкой и узкой стенок волновода, соответственно. Технический результат: достижение частотной независимости коэффициента прохождения электромагнитной волны в разрешенной зоне СВЧ фотонного кристалла при обеспечении возможности электрического управления характеристиками примесной моды затухания колебаний. 3 з.п. ф-лы, 8 ил.

Изобретение относится к области вооружения, а именно к разработке боевых частей для боеприпасов (снарядов, гранат, мин) и ракет. Боевая часть состоит из корпуса, взрывателя, заряда и поражающих элементов, расположенных между корпусом и зарядом. При этом поражающие элементы изготовлены из керамического материала и выполнены в виде объемных многогранных фигур, соединенных между собой в единый блок, занимающий все пространство между зарядом и корпусом. Поражающие элементы выполнены в виде трех- или четырехгранных призм, соединенных между собой с помощью радиопрозрачного или радиопоглощающего клеевого материала, толщина слоя которого составляет 0,05–1 мм. Поражающие элементы могут быть соединены между собой перемычкой из основного материала. Поражающие элементы могут быть изготовлены из керамического материала на основе оксида алюминия или нитрида кремния. Корпус боевой части выполнен из базальтового волокна или другого радионезаметного материала. Технический результат заключается в повышении поражающей способности боевой части, а также обеспечении ее радионезаметности. 6 з.п. ф-лы, 5 ил.

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого граната (ЖИГ), антенны для возбуждения магнитостатических волн, дополнительно введен слой пьезоэлектрического материала, снабженный металлическими электродами для подачи электрического напряжения, размещенный на поверхности микроволноводной структуры с возможностью пьезомагнитного взаимодействия, при этом микроволноводная структура образована тремя параллельными микроволноводами равной ширины, каждый из которых имеет прямоугольную форму и установлен с зазором друг относительно друга с обеспечением режима многомодовой связи, а антенны расположены на концах микроволноводов таким образом, что входная антенна размещена на одном конце срединного волновода, одна выходная антенна размещена на противоположном конце срединного волновода, а две других - на смежных с ним концах периферийных волноводов. Технический результат: создание трехканального микроволнового ответвителя мощности СВЧ сигнала с управлением частотным диапазоном ответвления и шириной полосы частот. 5 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам СВЧ-электроники и может быть использовано при конструировании нано- и микроэлектронных элементов для обработки сигналов. Элемент на магнитостатических спиновых волнах (МСВ) имеет две пары микрополосковых преобразователей, которые образуют два параллельных линейных канала распространения МСВ, разнесенных друг от друга на расстояние, обеспечивающее размещение между указанными каналами резонатора МСВ, взаимодействующего с линейными каналами. Каждый линейный канал распространения МСВ выполнен в виде системы одиночных цилиндрических включений из ферромагнитного материала, образованных в базовой ферромагнитной пленке и расположенных равномерно по длине канала, а резонатор МСВ представляет собой систему одиночных цилиндрических включений из ферромагнитного материала, образованных в базовой ферромагнитной пленке и расположенных равномерно по окружности. Включения из ферромагнитного материала имеют большую намагниченность, чем базовая ферромагнитная пленка. Технический результат - возможность реализации функций фильтра и резонатора при обеспечении пониженных вносимых потерь в диапазоне частот нескольких ГГц. 5 з.п. ф-лы, 6 ил.

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной на подложке, средства накачки активной среды, средства вывода генерируемых плазмонных импульсов. Резонансная структура представляет собой канал со скругленным дном, в котором размещена активная среда в виде квантовых точек. Средство накачки активной среды выполнено в виде источника ультрафиолетового излучения. При этом одна часть квантовых точек открыта к излучению указанного источника, а другая часть экранирована. Технический результат заключается в обеспечении возможности генерации оптических плазмонных импульсов с терагерцовой частотой с последующей возможностью интеграции в перспективные плазмонные схемы. 9 з.п. ф-лы, 10 ил.

Изобретение относится к пьезоэлектрическим приборам, в частности к пассивным меткам на поверхностных акустических волнах для систем радиочастотной идентификации. Технический результат: предотвращение искажения кодового сигнала, генерируемого меткой, и снижение потерь сигнала за счет последовательного соединения встречно-штыревых преобразователей (ВШП) различных акустических каналов и антенны в единую микрополосковую линию. Сущность: устройство состоит из антенны, пьезоэлектрической подложки и не менее двух акустических каналов с различными диапазонами рабочих частот. Каждый акустический канал расположен на пьезоэлектрической подложке и состоит из ВШП и не менее одного отражателя. ВШП всех акустических каналов соединены между собой последовательно, образуя с антенной единую микрополосковую линию. 3 з.п. ф-лы, 4 ил.

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на подложке, имеет периодически меняющееся по длине волновода поперечное сечение. При этом упомянутое изменение поперечного сечения канавки удовлетворяет условию образования фотонного кристалла с запрещенной зоной для моды, локализованной на краях канавки, с периодом L, определяемым по формуле , где с - скорость света, ν - рабочая частота излучения, εm и εd - соответственно диэлектрические проницаемости металла и диэлектрика на рабочей частоте. Технический результат изобретения заключается в возможности обеспечения одномодового режима распространения оптических плазмонов в волноводе на основе V-образной канавки в металлической пленке. 6 з.п. ф-лы, 7 ил.

Использование: для обработки сигналов в широкополосных СВЧ системах различного назначения. Сущность изобретения заключается в том, что регулируемая СВЧ линия задержки на магнитостатических волнах, содержит установленную неподвижно на основании диэлектрическую подложку с расположенными на ней параллельно и разнесенными друг от друга микрополосковыми преобразователями поверхностных магнитостатических волн (ПМСВ), магнитоактивный элемент, выполненный в виде прямоугольной пластины из диэлектрика с нанесенной на одну сторону пленкой железоиттриевого граната, связанный со средством перемещения относительно основания и обращенный пленкой к преобразователям ПМСВ, постоянный магнит подмагничивания, размещенный в зоне нахождения магнитоактивного элемента, при этом на свободной поверхности пленки железоиттриевого граната образована периодическая структура в виде ряда канавок одинакового размера, средство перемещения магнитоактивного элемента относительно основания выполнено с возможностью вращения в плоскости диэлектрической подложки, при этом наименьшее время задержки соответствует положению продольной оси канавок, параллельной оси преобразователей ПМСВ, а постоянный магнит расположен так, что вектор поля подмагничивания лежит в плоскости диэлектрической подложки и соосно микрополоскам преобразователей ПМСВ. Технический результат: обеспечение возможности управления временем задержки СВЧ сигнала без изменения величины поля и постоянного магнита. 2 з.п. ф-лы, 5 ил.

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники. Технический результат - уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа. Для этого в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. 4 ил.

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы. Техническим результатом является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях. Для этого в волноводную структуру с разрешенными и запрещенными зонами, содержащую диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, введена по крайней мере в один рамочный элемент по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью. 5 ил.

Изобретение относится к измерительной технике, может быть использовано для измерения диэлектрической проницаемости и толщин нанометровых проводящих пленок, нанесенных на подложку из диэлектрического материала. Технический результат заключается в повышении чувствительности и расширении функциональных возможностей. Устройство для определения параметров металлодиэлектрических структур, содержащее волноведущую систему, соединенную с цилиндрическим резонатором, в отверстии корпуса которого размещен элемент связи, отличающееся тем, что элемент связи является измерительным и изготовлен в виде регулируемой четвертьволновой рамки, один конец которой соединен с корпусом цилиндрического резонатора, а другой - выполнен в виде острия, помещенного в диэлектрическую вставку, размещенную в отверстии корпуса цилиндрического резонатора, и выступающего за внешние границы резонатора на величину, много меньшую длины стоячей электромагнитной волны основного типа цилиндрического резонатора; устройство содержит дополнительный элемент связи, предназначенный для ввода/вывода электромагнитного излучения СВЧ-диапазона, выполненный в виде двух соединенных между собой одним концом металлических четвертьволновых рамок, помещенных в диэлектрическую вставку, расположенную в отверстии между волноведущей системой и корпусом цилиндрического резонатора, причем первая рамка выполнена с возможностью поворота ее плоскости и находится во внутренней полости цилиндрического резонатора, а вторая - в волноведущей системе, другие концы рамок соединены с корпусом цилиндрического резонатора и волноведущей системой соответственно; в волноведущей системе размещен одномерный волноводный СВЧ фотонный кристалл, представляющий собой периодически чередующиеся слои двух типов, слои первого типа имеют постоянное значение величины относительной диэлектрической проницаемости намного большее единицы, слои второго типа - близкое к единице, общее число слоев и число слоев второго типа - нечетное, крайними в структуре фотонного кристалла являются слои первого типа, толщина слоев первого типа намного меньше толщины слоев второго типа, при этом сумма электрических длин слоев первого и второго типа равна половине длины электромагнитной волны, соответствующей середине используемого частотного диапазона, толщина центрального слоя фотонного кристалла составляет одну четвертую толщины слоя второго типа. 4 ил.

Изобретение относится к средствам анализа цифровых изображений. Техническим результатом является обеспечение классификации объектов по геометрическим признакам в лабиринтных структурах. В способе определяют количество объектов на изображении структуры, в качестве морфологических признаков используют коэффициенты округлости и заполнения для каждого из объектов, формируют нечеткую базу знаний для разделения объектов на круглые, эллиптические и гантелеобразные с использованием треугольной функции принадлежности, а для некруглых полосовых и ветвистых объектов - с использованием трапециевидной функции принадлежности на основе экспериментальных данных значений указанных коэффициентов округлости и заполнения, проводят распознавание доменов, формируют нечеткий классификатор разделения объектов по форме на круглые, эллиптические, гантелеобразные, полосовые и ветвистые объекты на основе соотношения коэффициента округлости и коэффициента заполнения объекта, проводят классификацию формы объектов. 1 з.п. ф-лы, 6 ил, 2 табл., 1 пр.

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах «полупроводниковый слой - полупроводниковая подложка». Способ определения электропроводности и толщины полупроводникового слоя включает облучение слоя электромагнитным излучением СВЧ-диапазона, измерение частотной зависимости коэффициента отражения электромагнитного излучения СВЧ-диапазона, согласно решению, используют одномерный волноводный СВЧ фотонный кристалл, в котором создают нарушение периодичности в виде измененной толщины центрального воздушного слоя. Предварительно помещают измеряемый полупроводниковый слой внутрь центрального слоя на заданном расстоянии от его границы, дополнительно измеряют частотную зависимость коэффициента прохождения электромагнитного излучения СВЧ-диапазона, затем помещают измеряемый полупроводниковый слой внутри центрального слоя на новом расстоянии от его границы или изменяют толщину центрального слоя, измеряют частотные зависимости коэффициента отражения и прохождения электромагнитного излучения СВЧ-диапазона, взаимодействующего с фотонным кристаллом, при новом положении исследуемой полупроводниковой структуры или при новом значении толщины центрального слоя, рассчитывают с помощью ЭВМ значения толщины и электропроводности, при которых теоретические частотные зависимости коэффициентов отражения и прохождения электромагнитного излучения, полученные при двух расстояниях от границы центрального слоя до исследуемой полупроводниковой структуры или при двух значениях толщины центрального слоя, наиболее близки к измеренным в этих положениях из решения системы уравнений. 8 ил.

Изобретение относится к радиотехнике и акустоэлектронике и может быть использовано в устройствах измерительной техники и в радиосвязи. Достигаемый технический результат - повышение разрешающей способности частотно-избирательного устройства для обработки сигналов на ПАВ в процессе параллельной обработки сигналов различных частот. Частотно-избирательное устройство для обработки сигналов на поверхностных акустических волнах (ПАВ) включает слоистый звукопровод из фононного кристалла в форме удлиненной пластины, на одной широкой грани которой размещен слой твердого вещества с акустическим импедансом, отличным от материала звукопровода, и связанные со звукопроводом по меньшей мере два электроакустических преобразователя, пластина фононного кристалла образована размещенной в матрице решеткой единичных протяженных элементов, продольная ось которых совпадает с шириной пластины, слой твердого вещества полностью покрывает поверхность пластины, причем входной электроакустический преобразователь выполнен с возможностью возбуждения ПАВ Лява в слое твердого вещества и размещен на широкой грани на одном конце пластины, слой твердого вещества в направлении длины пластины имеет участок переменной толщины, приемные электроакустические преобразователи расположены на другой широкой грани пластины. 5 з. п. ф-лы, 6 ил.

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор

Изобретение относится к радиотехнике и может быть использовано в качестве функционального элемента для обработки сигналов в широкополосных СВЧ-системах различного назначения

Изобретение относится к электронной технике и может быть использовано при производстве магнитных носителей информации

Изобретение относится к технологии микроэлектроники и может быть использовано в технологии наноимпринт-литографии при получении упорядоченных массивов магнитных и других наноструктур

Изобретение относится к области радиотехники и предназначено для использования в качестве элементной базы при частотной фильтрации сигналов в широкополосных системах СВЧ различного назначения

Изобретение относится к области радиотехники и может быть использовано для идентификации и охраны различных объектов

 


Наверх